MISP galaxy format

draft-dulaunoy-misp-galaxy-format-05

Abstract

This document describes the MISP galaxy format which describes a simple JSON format to represent galaxies and clusters that can be attached to MISP events or attributes. A public directory of MISP galaxies is available and relies on the MISP galaxy format. MISP galaxies are used to add further informations on a MISP event. MISP galaxy is a public repository [MISP-G] [MISP-G-DOC] of known malware, threats actors and various other collections of data that can be used to mark, classify or label data in threat information sharing.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on March 31, 2019.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .. 2
 1.1. Conventions and Terminology 2
2. Format .. 3
 2.1. Overview .. 3
 2.2. values .. 3
 2.3. related ... 3
 2.4. meta .. 4
3. JSON Schema .. 7
 3.1. MISP galaxy format - clusters 8
4. Acknowledgements .. 11
5. References ... 11
 5.1. Normative References 11
 5.2. Informative References 11
Authors’ Addresses ... 12

1. Introduction

Sharing threat information became a fundamental requirements on the Internet, security and intelligence community at large. Threat information can include indicators of compromise, malicious file indicators, financial fraud indicators or even detailed information about a threat actor. Some of these informations, such as malware or threat actors are common to several security events. MISP galaxy is a public repository [MISP-G] of known malware, threats actors and various other collections of data that can be used to mark, classify or label data in threat information sharing.

In the MISP galaxy context, clusters help analysts to give more informations about their cybersecurity events, indicators or threats. MISP galaxies can be used for classification, filtering, triggering actions or visualisation depending on their use in threat intelligence platforms such as MISP [MISP-P].

1.1. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
2. Format

A cluster is composed of a value (MUST), a description (OPTIONAL) and metadata (OPTIONAL).

Clusters are represented as a JSON [RFC4627] dictionary.

2.1. Overview

The MISP galaxy format uses the JSON [RFC4627] format. Each galaxy is represented as a JSON object with meta information including the following fields: name, uuid, description, version, type, authors, source, values.

name defines the name of the galaxy. The name is represented as a string and MUST be present. The uuid represents the Universally Unique Identifier (UUID) [RFC4122] of the object reference. The uuid MUST be preserved. For any updates or transfer of the same object reference. UUID version 4 is RECOMMENDED when assigning it to a new object reference and MUST be present. The description is represented as a string and MUST be present. The uuid is represented as a string and MUST be present. The version is represented as a decimal and MUST be present. The type is represented as a string and MUST be present and MUST match the name of the galaxy file. The source is represented as a string and MUST be present. Authors are represented as an array containing one or more authors and MUST be present.

Values are represented as an array containing one or more values and MUST be present. Values defines all values available in the galaxy.

2.2. values

The values array contains one or more JSON objects which represent all the possible values in the galaxy. The JSON object contains four fields: value, description, uuid and meta. The value is represented as a string and MUST be present. The description is represented as a string and SHOULD be present. The meta or metadata is represented as a JSON list and SHOULD be present. The uuid represents the Universally Unique Identifier (UUID) [RFC4122] of the value reference. The uuid SHOULD can be present and MUST be preserved.

2.3. related

Related contains a list of JSON key value pairs which describe the related values in this galaxy cluster or to other galaxy clusters. The JSON object contains three fields, dest-uuid, type and tags. The dest-uuid represents the target UUID which encompasses a relation of some type. The dest-uuid is represented as a string and MUST be
present. The type is represented as a string and MUST be present and
SHOULD be selected from the relationship types available in MISP
objects [MISP-R]. The tags is a list of string which labels the
related relationship such as the level of similarities, level of
certainty, trust or confidence in the relationship, false-positive.
A tag is represented in machine tag format which is a string an
SHOULD be present.

"related": [{
 "dest-uuid": "f873db71-3d53-41d5-b141-530675ade27a",
 "type": "similar",
 "tags": ["estimative-language:likelihood-probability="very-likely"]
}]

2.4. meta

Meta contains a list of custom defined JSON key value pairs. Users
SHOULD reuse commonly used keys such as complexity, effectiveness,
country, possible_issues, colour, motive, impact, refs, synonyms,
status, date, encryption, extensions, ransomnotes, suspected-victims,
suspected-state-sponsor, type-of-incident, target-category, cfr-
suspected-victims, cfr-suspected-state-sponsor, cfr-type-of-incident,
cfr-target-category wherever applicable.

refs, synonyms SHALL be used to give further informations. refs is
represented as an array containing one or more strings and SHALL be
present. synonyms is represented as an array containing one or more
strings and SHALL be present.

date, status MAY be used to give time information about an cluster.
date is represented as a string describing a time or period and SHALL
be present. status is represented as a string describing the current
status of the clusters. It MAY also describe a time or period and
SHALL be present.

colour fields MAY be used at predicates or values level to set a
specify colour that MAY be used by the implementation. The colour
field is described as an RGB colour fill in hexadecimal
representation.

complexity, effectiveness, impact, possible_issues MAY be used to
give further information in preventive-measure galaxy. complexity is
represented by an enumerated value from a fixed vocabulary and SHALL
be present. effectiveness is represented by an enumerated value from
a fixed vocabulary and SHALL be present. impact is represented by an
enumerated value from a fixed vocabulary and SHALL be present.
possible_issues is represented as a string and SHOULD be present.
Example use of the complexity, effectiveness, impact, possible_issues fields in the preventive-measure galaxy:

```json
{
  "meta": {
    "refs": [
    ],
    "complexity": "Low",
    "effectiveness": "Medium",
    "impact": "Medium",
    "type": [
      "GPO"
    ],
    "possible_issues": "Administrative VBS scripts on Workstations"
  },
  "value": "Disable WSH",
  "description": "Disable Windows Script Host",
  "uuid": "e6df1619-f8b3-476c-b5cf-22b4c9e9dd7f"
}
```

country, motive MAY be used to give further information in threat-actor galaxy. country is represented as a string and SHOULD be present. motive is represented as a string and SHOULD be present.

Example use of the country, motive fields in the threat-actor galaxy:

```json
{
  "meta": {
    "country": "CN",
    "synonyms": [
      "APT14",
      "APT 14",
      "QAZTeam",
      "ALUMINUM"
    ],
    "refs": [
      "http://www.crowdstrike.com/blog/whois-anchor-panda/
    ],
    "motive": "Espionage"
  },
  "value": "Anchor Panda",
  "description": "PLA Navy",
  "uuid": "c82c904f-b3b4-40a2-bf0d-008912953104"
}
```

encryption, extensions, ransomnotes MAY be used to give further information in ransomware galaxy. encryption is represented as a
Example use of the encryption, extensions, ransomnotes fields in the ransomware galaxy:

```json
{
"meta": {
"refs": [
"https://id-ransomware.blogspot.co.il/2017/03/revenge-ransomware.html"
],
"ransomnotes": [
"https://2.bp.blogspot.com/-KkPVDxjy8tk/WM7LtYHmuAI/AAAAAAAAEUw/kDJghaq-j1AZuqjzqk2Fkxpp4yr9Yeb5wCLcB/s1600/revenge-note-2.jpg",
"===ENGLISH=== All of your files were encrypted using REVENGE Ransomware. The action required to restore the files. Your ... you receive the software to return all files. For proof, we can decrypt one file for free. Attach it to an e-mail.
"# !!!HELP_FILE!!! #.txt"
],
"encryption": "AES-256 + RSA-1024",
"extensions": [".REVENGE"],
"date": "March 2017"
},
"description": "This is most likely to affect English speaking users, since the note is written in English. English is ... including music, MS Office, Open Office, pictures, videos, shared online files etc.. CryptoMix / CryptFile2 Variant",
"value": "Revenge Ransomware",
"uuid": "987d36d5-6ba8-484d-9e0b-7324cc886b0e"
}
```

Example use of the source-uuid, target-uuid fields in the mitre-enterprise-attack-relationship galaxy:

```json
{
"meta": {
"source-uuid": "222fbd21-fc4f-4b7e-9f85-0e6e3a76c33f",
"target-uuid": "2f1a9fd0-3b7c-4d77-a358-78db13adbe78"
},
"uuid": "cfc7da70-d7c5-4508-8f50-1c3107269633",
"value": "menuPass (G0045) uses EvilGrab (S0152)"
}
```
cfr-suspected-victims, cfr-suspected-state-sponsor, cfr-type-of-incident and cfr-target-category MAY be used to report information gathered from CFR's (Council on Foreign Relations) [CFR] Cyber Operations Tracker. cfr-suspected-victims is represented as an array containing one or more strings and SHALL be present. cfr-suspected-state-sponsor is represented as a string and SHALL be present. cfr-type-of-incident is represented as a string or an array and SHALL be present. RECOMMENDED but not exhaustive list of possible values for cfr-type-of-incident includes "Espionage", "Denial of service", "Sabotage". cfr-target-category is represented as an array containing one or more strings ans SHALL be present. RECOMMENDED but not exhaustive list of possible values for cfr-target-category includes "Private sector", "Government", "Civil society", "Military".

Example use of the cfr-suspected-victims, cfr-suspected-state-sponsor, cfr-type-of-incident, cfr-target-category fields in the threat-actor galaxy:

```
{
    "meta": {
        "country": "CN",
        "refs": [
            "https://www.fireeye.com/blog/threat-research/2015/12/the_eps_awakens.html",
            "https://www.cfr.org/interactive/cyber-operations/apt-16"
        ],
        "cfr-suspected-victims": [
            "Japan",
            "Taiwan"
        ],
        "cfr-suspected-state-sponsor": "China",
        "cfr-type-of-incident": "Espionage",
        "cfr-target-category": [
            "Private sector"
        ]
    },
    "value": "APT 16",
    "uuid": "1f73e14f-b882-4032-a565-26dc653b0daf"
}
```

3. JSON Schema

The JSON Schema [JSON-SHEMA] below defines the overall MISP galaxy formats. The main format is the MISP galaxy format used for the clusters.
3.1. MISP galaxy format – clusters

```json
{
    "$schema": "http://json-schema.org/schema#",
    "title": "Validator for misp-galaxies - Clusters",
    "id": "https://www.github.com/MISP/misp-galaxies/schema_clusters.json",
    "type": "object",
    "additionalProperties": false,
    "properties": {
        "description": {
            "type": "string"
        },
        "type": {
            "type": "string"
        },
        "version": {
            "type": "integer"
        },
        "name": {
            "type": "string"
        },
        "uuid": {
            "type": "string"
        },
        "source": {
            "type": "string"
        },
        "values": {
            "type": "array",
            "uniqueItems": true,
            "items": {
                "type": "object",
                "additionalProperties": false,
                "properties": {
                    "description": {
                        "type": "string"
                    },
                    "value": {
                        "type": "string"
                    },
                    "uuid": {
                        "type": "string"
                    },
                    "related": {
                        "type": "array",
                        "additionalProperties": false,
                        "items": {
                            "type": "object"
                        }
                    }
                }
            }
        }
    }
}
```
"properties": {
 "dest-uuid": {
 "type": "string"
 },
 "type": {
 "type": "string"
 },
 "tags": {
 "type": "array",
 "uniqueItems": true,
 "items": {
 "type": "string"
 }
 },
 "meta": {
 "type": "object",
 "additionalProperties": true,
 "properties": {
 "type": {
 "type": "array",
 "uniqueItems": true,
 "items": {
 "type": "string"
 }
 },
 "complexity": {
 "type": "string"
 },
 "effectiveness": {
 "type": "string"
 },
 "country": {
 "type": "string"
 },
 "possible_issues": {
 "type": "string"
 },
 "colour": {
 "type": "string"
 },
 "motive": {
 "type": "string"
 },
 "impact": {
 "type": "string"
 }
 }
 }
}
},
 "refs": {
 "type": "array",
 "uniqueItems": true,
 "items": {
 "type": "string"
 }
 },
 "synonyms": {
 "type": "array",
 "uniqueItems": true,
 "items": {
 "type": "string"
 }
 },
 "status": {
 "type": "string"
 },
 "date": {
 "type": "string"
 },
 "encryption": {
 "type": "string"
 },
 "extensions": {
 "type": "array",
 "uniqueItems": true,
 "items": {
 "type": "string"
 }
 },
 "ransomnotes": {
 "type": "array",
 "uniqueItems": true,
 "items": {
 "type": "string"
 }
 },
 "required": [
 "value"
]
}
},
"authors": {
 "type": "array",
 "uniqueItems": true,
 "items": {
 "type": "string"
 }
}
"uniqueItems": true,
"items": {
 "type": "string"
}
},
"required": [
 "description",
 "type",
 "version",
 "name",
 "uuid",
 "values",
 "authors",
 "source"
]}

4. Acknowledgements

The authors wish to thank all the MISP community who are supporting the creation of open standards in threat intelligence sharing.

5. References

5.1. Normative References

5.2. Informative References

Internet-Draft MISP galaxy format September 2018

[JSON-SHEMA]
"JSON Schema: A Media Type for Describing JSON Documents", 2016,

[MISP-G] MISP, "MISP Galaxy - Public Repository",

[MISP-G-DOC] MISP, "MISP Galaxy - Documentation of the Public
Repository", <https://www.misp-project.org/galaxy.html>.

[MISP-P] MISP, "MISP Project - Malware Information Sharing Platform

[MISP-R] MISP, "MISP Object Relationship Types - common vocabulary

Authors’ Addresses

Alexandre Dulaunoy
Computer Incident Response Center Luxembourg
16, bd d’Avranches
Luxembourg L-1611
Luxembourg

Phone: +352 247 88444
Email: alexandre.dulaunoy@circl.lu

Andras Iklody
Computer Incident Response Center Luxembourg
16, bd d’Avranches
Luxembourg L-1611
Luxembourg

Phone: +352 247 88444
Email: andras.iklody@circl.lu