A Yang Data Model for WSON Optical Networks

draft-ietf-ccamp-wson-yang-09.txt

Abstract

This document provides a YANG data model for the routing and wavelength assignment (RWA) TE topology in wavelength switched optical networks (WSONs).

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt
1. Introduction

This document provides a YANG data model for the routing and wavelength assignment (RWA) Traffic Engineering (TE) topology in wavelength switched optical networks (WSONs). The YANG model described in this document is a WSON technology-specific Yang model based on the information model developed in [RFC7446] and the two
encoding documents [RFC7581] and [RFC7579] that developed protocol independent encodings based on [RFC7446]. This document augments the the generic TE topology draft [TE-TOPO].

What is not in scope of this document is both impairment-aware WSON and flex-grid.

This document defines two YANG models: ietf-wson-topology (Section 3) and ietf-te-wson-types (Section 4).

2. YANG Model (Tree Structure)

module: ietf-wson-topology
augment /nd:networks/nd:network/nd:network-types/tet:te-topology:
 +--rw wson-topology!
 +--rw wavelength-availability-range? te-wson-types:wavelength-range-type
augment /nd:networks/nd:network/lnk:link/tet:te/tet:te-link-attributes:
 +--rw channel-num? int32
 +--rw first-channel-frequency? decimal64
 +--rw channel-spacing? decimal64
 +--rw available-wavelength-info* [priority]
 +--rw priority uint8
 +--rw wavelength-availability-range? te-wson-types:wavelength-range-type
 +--rw wson-node
 +--rw node-type? identityref
augment /nd:networks/nd:network/nd:node/tet:te/tet:tunnel-termination-point:
 +--rw available-operational-mode* te-wson-types:operational-mode
 +--rw operational-mode? te-wson-types:operational-mode
3. IETF-WSON-Topology YANG Model

<CODE BEGINS> file "ietf-wson-topology@2017-10-09.yang"

module ietf-wson-topology {
 //TODO: FIXME
 //yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-wson-topology";

 prefix "wson";

 import ietf-network {
 prefix "nd";
 }

 import ietf-network-topology {
 prefix "lnk";
 }

 import ietf-inet-types {
 prefix "inet";
 }

 import ietf-te-topology {
 prefix "tet";
 }

 import ietf-te-wson-types { //Modified
 prefix "te-wson-types";
 }

 //NOT NEEDED
 /*import ietf-transport-types {
 prefix "tran-types";
 } */

 organization
 "IETF CCAMP Working Group";

 contact
 "Editor: Young Lee <leeyoung@huawei.com>";

 description
 "This module contains a collection of YANG definitions"
for

RWA WSON.

Copyright (c) 2016 IETF Trust and the persons identified
as
authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with
or
without modification, is permitted pursuant to, and
subject
to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust’s

Legal

Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info).

revision 2017-10-09 {
 description
 "version 8."
 reference
 "RFC XXX: A Yang Data Model for WSON Optical
 Networks ";
}

typedef wson-topology-id {
 type inet:uri;
 description
 "The WSON Topology ID"
}

grouping wson-topology-type {
 description "wson-topology type"
 container wson-topology {
 presence "indicates a topology of wson"
 description
 "Container to identify wson topology type"
 }
}

grouping wson-node-attributes {
 description "WSON node attributes"
 container wson-node {
 description "WSON node attributes";
 }
}
leaf node-type {
 type identityref {
 base te-wson-types:wson-node-type;
 }
 description "WSON node type.";
}

grouping wson-wavelength-availability-range{
 description "wavelength availability range";
 leaf wavelength-availability-range{
 type te-wson-types:wavelength-range-type;
 description "range that indicates if a wavelength is available or not on each channel at specified priority level.";
 }
}

grouping wson-link-attributes {
 description "WSON link attributes";
 leaf channel-num {
 type int32;
 description "Number of OCh channels available";
 }
 leaf first-channel-frequency {
 type decimal64 {
 fraction-digits 5;
 }
 units THz;
 description "First channel frequency in the grid";
 }
 leaf channel-spacing {
 type decimal64 {
 fraction-digits 5;
 }
 units GHz;
 description "This is fixed channel spacing for WSON, e.g., 12.5, 25, 50, 100, ..";
 }

 list available-wavelength-info{
 key "priority";
 }
}
max-elements "8";

description
 "List of available wavelength channels on this link";

leaf priority {
 type uint8 {
 range "0..7";
 description "priority";
 }
 uses wson-wavelength-availability-range;
}

grouping wson-tp-attributes {
 description "wson-tp-attributes";

 leaf client-facing {
 type empty;
 description
 "if present, it means this tp is a client-facing tp.
 adding/dropping client signal flow.";
 }

 /*
 //can it be fully covered by interface-switching-capability of base
 TE model?
 leaf-list supported-client-signals {
 type identityref {
 base tran-types:client-signal;
 }
 description
 "Supported client signals at this TP";
 }
 */

 grouping wson-ttp-attributes {
 description "WSON tunnel termination point (e.g.
 tranponder) attributes";
 leaf-list available-operational-mode {
 type te-wson-types:operational-mode;
 description "List of all vendor-specific supported
 operating-mode";
 }
 }
}
mode identifiers";
}

leaf operational-mode {
 type te-wson-types:operational-mode;
 description "Vendor-specific mode identifier";
}
}

/* AUGMENTS */

 description "wson-topology augmented";
 uses wson-topology-type;
}

//FIXING NMDA
 description "This augment is only valid for WSON connectivity matrix.";
 }
 description "WSON connectivity matrix config augmentation";
 uses wson-wavelength-availability-range;
}

//REMOVING
/*
 description "This augment is only valid for WSON connectivity matrix.";
 }
}
description "WSON connectivity matrix state augmentation";
uses wson-wavelength-availability-range;
}/*

//FIXING NMDA
augment "/nd:networks/nd:network/lnk:link/tet:te"
 + "/tet:te-link-attributes" {
 when "/nd:networks/nd:network/nd:network-types"
 + "/tet:te-topology/wson:wson-topology" {
 description
 "This augment is only valid for WSON.";
 }
 description "WSON Link augmentation.";
}
uses wson-link-attributes;
}

//REMOVING
/*
 + "/tet:te-link-attributes" {
 when "/nd:networks/nd:network/nd:network-types"
 + "/tet:te-topology/wson:wson-topology" {
 description
 "This augment is only valid for WSON.";
 }
 description "WSON Link augmentation.";
}
uses wson-link-attributes;
}*/

//FIXING NMDA
augment "/nd:networks/nd:network/nd:node/tet:te"
 + "/tet:te-node-attributes" {
 when "/nd:networks/nd:network/nd:network-types"
 + "/tet:te-topology/wson:wson-topology" {
 description
 "This augment is only valid for WSON.";
 }
 description "WSON Node augmentation.";
}
uses wson-node-attributes;
}

//REMOVING

/**
 + "/tet:te-node-attributes" {
 when "/nd:networks/nd:network/nd:network-types"
 +"/tet:te-topology/wson:wson-topology" {
 description
 "This augment is only valid for WSON.";
 }
 description "WSON Node augmentation.";
 uses wson-node-attributes;
}/**

//FIXING NMDA
augment "/nd:networks/nd:network/nd:node/tet:te"
 + "/tet:tunnel-termination-point" {
 when "/nd:networks/nd:network/nd:network-types"
 +"/tet:te-topology/wson:wson-topology" {
 description
 "This augment is only valid for WSON.";
 }
 description "WSON tunnel termination point augmentation.";
 uses wson-ttp-attributes;
}

//removing
/*augment "/nd:networks/nd:network/nd:node/tet:te"
 + "/tet:tunnel-termination-point/tet:state" {
 when "/nd:networks/nd:network/nd:network-types"
 +"/tet:te-topology/wson:wson-topology" {
 description
 "This augment is only valid for WSON.";
 }
 description "WSON tunnel termination point augmentation.";
 uses wson-ttp-attributes;
}*/

</CODE ENDS>
4. IETF-TE-WSON-Types YANG Model

```xml
<CODE BEGINS> file "ietf-te-wson-types@2017-10-09.yang"

module ietf-te-wson-types {
    prefix "te-wson-types";

    organization
        "IETF CCAMP Working Group";
    contact
        "WG Web: <http://tools.ietf.org/wg/ccamp/>
        WG List: <mailto:ccamp@ietf.org>
        Editor: Aihua Guo
        <mailto:aihuaguo@huawei.com>
        Editor: Young Lee
        <mailto:leeyoung@huawei.com>";

    description
        "This module defines WSON types.";

    revision "2017-10-09" {
        description
            "Revision 0.1";
        reference "TBD";
    }

    typedef operational-mode {
        type string;
        description
            "Vendor-specific mode that guarantees interoperability.
             It must be an string with the following format:
             B-DScW-ytz(v) where all these attributes are conformant
to the ITU-T recomendation";
        reference "ITU-T G.698.2 (11/2009) Section 5.3";
    }

    identity wson-node-type {
        description
```
typedef wavelength-range-type {
 type string {
 pattern "([1-9][0-9]{0,3}(-[1-9][0-9]{0,3})?" +
 ",([1-9][0-9]{0,3}(-[1-9][0-9]{0,3})?)*)";
 }
 description
 "A list of WDM channel numbers (starting at 1) in ascending order. For example: 1,12-20,40,50-80";
}

identity wavelength-assignment {
 description "Wavelength selection base";
}

identity unspecified-wavelength-assignment {
 base wavelength-assignment;
 description "No method specified";
}

identity first-fit-wavelength-assignment {
 base wavelength-assignment;
 description "All the available wavelengths are numbered, and this WA method chooses the available wavelength with the lowest index.";
}

identity random-wavelength-assignment {
 base wavelength-assignment;
 description "This WA method chooses an available wavelength randomly.";
}

identity least-loaded-wavelength-assignment {
 base wavelength-assignment;
 description "This WA method selects the wavelength that has the largest residual capacity on the most loaded link along the route (in multi-fiber networks).";
}

5. Security Considerations
 TDB

6. IANA Considerations
 TDB
7. Acknowledgments

This document was prepared using 2-Word-v2.0.template.dot.
8. References

8.1. Normative References

8.2. Informative References

9. Contributors

Authors' Addresses

Young Lee (ed.)
Huawei Technologies
5340 Legacy Drive, Building 3
Plano, TX 75023
USA

Phone: (469) 277-5838
Email: leeyoung@huawei.com

Dhruv Dhody
Huawei Technologies India Pvt. Ltd,
Near EPIP Industrial Area, Kundalahalli Village, Whitefield,
Bangalore - 560 037 [H1-2A-245]