YANG Groupings for TCP Clients and TCP Servers
draft-kwatsen-netconf-tcp-client-server-01

Abstract

This document defines two YANG modules: the first defines a grouping for configuring a generic TCP client, and the second defines a grouping for configuring a generic TCP server. It is intended that these groupings will be used by applications using the TCP protocol.

Editorial Note (To be removed by RFC Editor)

This draft contains many placeholder values that need to be replaced with finalized values at the time of publication. This note summarizes all of the substitutions that are needed. No other RFC Editor instructions are specified elsewhere in this document.

Artwork in this document contains placeholder values for the date of publication of this draft. Please apply the following replacement:

- "2019-04-07" --> the publication date of this draft

The following Appendix section is to be removed prior to publication:

- Appendix A. Change Log

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on October 9, 2019.
1. Introduction

This document defines two YANG 1.1 [RFC7950] modules: the first defines a grouping for configuring a generic TCP client, and the second defines a grouping for configuring a generic TCP server. It is intended that these groupings will be used by applications using the TCP protocol. For instance, these groupings could help define the configuration module for an SSH, TLS, or HTTP based application.
2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

3. The TCP Client Model

3.1. Tree Diagram

This section provides a tree diagram [RFC8340] for the "ietf-tcp-client" module.

module: ietf-tcp-client

grouping tcp-client-grouping
 +- tcp-client-parameters
 +-- remote-address inet:host
 +-- remote-port? inet:port-number
 +-- local-address? inet:ip-address
 +-- local-port? inet:port-number
 +-- keepalives! {tcp-client-keepalives}?
 +-- idle-time uint16
 +-- max-probes? uint16
 +-- probe-interval? uint16

3.2. Example Usage

This section presents an example showing the tcp-client-grouping populated with some data.

 <tcp-client-parameters>
 <remote-address>www.example.com</remote-address>
 <remote-port>443</remote-port>
 <local-address>0.0.0.0</local-address>
 <local-port>0</local-port>
 <keepalives>
 <idle-time>15</idle-time>
 <max-probes>3</max-probes>
 <probe-interval>30</probe-interval>
 </keepalives>
 </tcp-client-parameters>
</tcp-client>
3.3. YANG Module

This YANG module has normative references to [RFC6991].

<CODE BEGINS> file "ietf-tcp-client@2019-04-07.yang"
module ietf-tcp-client {
 yang-version 1.1;
 prefix tcpc;

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 organization "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>
 Author: Kent Watsen <mailto:kent+ietf@watsen.net>";

 description
 "This module defines reusable groupings for TCP clients that
 can be used as a basis for specific TCP client instances.

 Copyright (c) 2019 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Simplified
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC
 itself for full legal notices.;

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.";
revision 2019-04-07 {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Groupings for TCP Clients and TCP Servers";
}

// Features

feature tcp-client-keepalives {
 description
 "Per socket TCP keepalive parameters are configurable for
 TCP clients on the server implementing this feature.";
}

// Groupings

grouping tcp-client-grouping {
 description
 "A reusable grouping for configuring a TCP client.";
 container tcp-client-parameters {
 description
 "A container to hold TCP client configuration.";
 leaf remote-address {
 type inet:host;
 mandatory true;
 description
 "The IP address or hostname of the remote peer to
 establish a connection with. If a domain name is
 configured, then the DNS resolution should happen on
 each connection attempt. If the the DNS resolution
 results in multiple IP addresses, the IP addresses
 are tried according to local preference order until
 a connection has been established or until all IP
 addresses have failed.";
 }
 leaf remote-port {
 type inet:port-number;
 default "0";
 description
 "The IP port number for the remote peer to establish a
 connection with. An invalid default value (0) is used
 (instead of 'mandatory true') so that as application
 level data model may 'refine' it with an application
 specific default port number value.";
 }
 leaf local-address {
 type inet:ip-address;
 mandatory true;
 description
 "The IP address or hostname of the local peer to
 establish a connection with. An invalid default value (0) is used
 (instead of 'mandatory true') so that as application
 level data model may 'refine' it with an application
 specific default IP address value.";
 }
 }
}
description
"The local IP address/interface (VRF?) to bind to for when connecting to the remote peer. INADDR_ANY (‘0.0.0.0’) or INADDR6_ANY (‘0:0:0:0:0:0:0:0’ a.k.a. ’::’) MAY be used to explicitly indicate the implicit default, that the server can bind to any IPv4 or IPv6 addresses, respectively."

} leaf local-port {
 type inet:port-number;
 default "0";
 description
 "The local IP port number to bind to for when connecting to the remote peer. The port number ‘0’, which is the default value, indicates that any available local port number may be used.";
}

container keepalives {
 if-feature "tcp-client-keepalives";
 presence "Indicates that keepalives are enabled.";
 description
 "Configures the keep-alive policy, to proactively test the aliveness of the TCP server. Not all clients will use all the values, based on capabilities of the underlying operating system. An unresponsive TCP server is dropped after approximately (idle-time * 60) + (max-probes * probe-interval) seconds."
 leaf idle-time {
 type uint16 {
 range "1..max";
 }
 units "minutes";
 mandatory true;
 description
 "Sets the amount of time in minutes after which if no data has been received from the TCP server, a TCP-level probe message will be sent to test the aliveness of the TCP server.";
 }
 leaf max-probes {
 type uint16 {
 range "1..max";
 }
 description
 "Sets the maximum number of sequential keep-alive probes that can fail to obtain a response from the TCP server before assuming the TCP server is no longer alive. If no value is specified, then the operating system provided default value is used.";
 }
4. The TCP Server Model

4.1. Tree Diagram

This section provides a tree diagram [RFC8340] for the "ietf-tcp-server" module.

module: ietf-tcp-server

grouping tcp-server-grouping
 +- tcp-server-parameters
 +- local-address inet:ip-address
 +- local-port? inet:port-number
 +- keepalives! {tcp-server-keepalives}?
 +- idle-time uint16
 +- max-probes? uint16
 +- probe-interval? uint16

4.2. Example Usage

This section presents an example showing the tcp-server-grouping populated with some data.
4.3. YANG Module

This YANG module has normative references to [RFC6991].

<CODE BEGINS> file "ietf-tcp-server@2019-04-07.yang"
module ietf-tcp-server {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-tcp-server";
 prefix tcps;

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>
 Author: Kent Watsen <mailto:kent+ietf@watsen.net>";

 description
 "This module defines reusable groupings for TCP servers that
 can be used as a basis for specific TCP server instances.

 Copyright (c) 2019 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Simplified
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents";

4.3. YANG Module

This YANG module has normative references to [RFC6991].

<CODE BEGINS> file "ietf-tcp-server@2019-04-07.yang"
module ietf-tcp-server {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-tcp-server";
 prefix tcps;

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>
 Author: Kent Watsen <mailto:kent+ietf@watsen.net>";

 description
 "This module defines reusable groupings for TCP servers that
 can be used as a basis for specific TCP server instances.

 Copyright (c) 2019 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Simplified
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents";
Internet-Draft Groupings for TCP Clients and Servers April 2019

This version of this YANG module is part of RFC XXXX (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself for full legal notices.

revision 2019-04-07 {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Groupings for TCP Clients and TCP Servers";
}

// Features

feature tcp-server-keepalives {
 description
 "Per socket TCP keepalive parameters are configurable for
 TCP servers on the server implementing this feature."
}

// Groupings

grouping tcp-server-grouping {
 description
 "A reusable grouping for configuring a TCP server.";
 container tcp-server-parameters {
 description
 "A container to hold TCP server configuration.";
 leaf local-address {
 type inet:ip-address;
 mandatory true;
 description
 "The local IP address to listen on for incoming
 TCL client connections. INADDR_ANY (0.0.0.0) or
 INADDR6_ANY (0:0:0:0:0:0:0 a.k.a. ::) MUST be
 used when the server is to listen on all IPv4 or
 IPv6 addresses, respectively.";
 }
 leaf local-port {
 type inet:port-number;
 }
 }

 leaf port {
 type inet:port-number;
 }
 leaf local-addr {
 type inet:ip-address;
 }
 leaf local-addr6 {
 type inet:ip-address;
 }
}

leaf port {
 type inet:port-number;
}

leaf local-addr {
 type inet:ip-address;
}

leaf local-addr6 {
 type inet:ip-address;
}

leaf local-address {
 type inet:ip-address;
}

leaf local-port {
 type inet:port-number;
}
default "0";
description
"The local port number to listen on for incoming TCP client connections. An invalid default value (0) is used (instead of 'mandatory true') so that an application level data model may 'refine' it with an application specific default port number value."
}

container keepalives {
 if-feature "tcp-server-keepalives";
presence "Indicates that keepalives are enabled.";
description
"Configures the keep-alive policy, to proactively test the aliveness of the TCP client. Not all servers will use all the values, based on capabilities of the underlying operating system. An unresponsive TCP client is dropped after approximately (idle-time * 60) + (max-probes * probe-interval) seconds."
leaf idle-time {
 type uint16 {
 range "1..max";
 }
 units "minutes";
 mandatory true;
description
"Sets the amount of time in minutes after which if no data has been received from the TCP client, a TCP-level probe message will be sent to test the aliveness of the TCP client."
}

leaf max-probes {
 type uint16 {
 range "1..max";
 }
description
"Sets the maximum number of sequential keep-alive probes that can fail to obtain a response from the TCP client before assuming the TCP client is no longer alive. If no value is specified, then the operating system provided default value is used."
}

leaf probe-interval {
 type uint16 {
 range "1..max";
 }
 units "seconds";
description
"Sets the time interval between failed probes. If no
value is specified, then the operating system provided default value is used."
}
} // container keepalives
} // container tcp-server-parameters
}
</CODE ENDS>

5. Security Considerations

The YANG modules defined in this document are designed to be accessed via YANG based management protocols, such as NETCONF [RFC6241] and RESTCONF [RFC8040]. Both of these protocols have mandatory-to-implement secure transport layers (e.g., SSH, TCP) with mutual authentication.

The NETCONF access control model (NACM) [RFC8341] provides the means to restrict access for particular users to a pre-configured subset of all available protocol operations and content.

Since the modules defined in this document only define groupings, these considerations are primarily for the designers of other modules that use these groupings.

There are a number of data nodes defined in the YANG modules that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:

None of the writable/creatable/deletable data nodes in the YANG modules defined in this document are considered more sensitive or vulnerable then standard configuration.

Some of the readable data nodes in the YANG modules may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:

None of the readable data nodes in the YANG modules defined in this document are considered more sensitive or vulnerable then standard configuration.
This document does not define any RPC actions and hence this section does not consider the security of RPCs.

6. IANA Considerations

6.1. The IETF XML Registry

This document registers two URIs in the "ns" subregistry of the IETF XML Registry [RFC3688]. Following the format in [RFC3688], the following registrations are requested:

Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

6.2. The YANG Module Names Registry

This document registers two YANG modules in the YANG Module Names registry [RFC6020]. Following the format in [RFC6020], the following registrations are requested:

name: ietf-tcp-client
prefix: tcpc
reference: RFC XXXX

name: ietf-tcp-server
prefix: tcps
reference: RFC XXXX

7. References

7.1. Normative References

7.2. Informative References

Author’s Address

Kent Watsen
Watsen Networks

EMail: kent+ietf@watsen.net