Well-Known Uniform Resource Identifiers (URIs)
draft-nottingham-rfc5785bis-08

Abstract

This memo defines a path prefix for "well-known locations", "/.well-known/", in selected Uniform Resource Identifier (URI) schemes.

Note to Readers

/rfc editor: please remove this section before publication_

This draft is a proposed revision of RFC5875.

The issues list for this draft can be found at
https://github.com/mnot/I-D/labels/rfc5785bis [1].

The most recent (often, unpublished) draft is at

Recent changes are listed at https://github.com/mnot/I-D/commits/gh-pages/rfc5785bis [3].

See also the draft’s current status in the IETF datatracker, at

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
1. Introduction

Some applications on the Web require the discovery of information about an origin [RFC6454] (sometimes called "site-wide metadata") before making a request. For example, the Robots Exclusion Protocol (http://www.robotstxt.org/) [5]) specifies a way for automated processes to obtain permission to access resources; likewise, the Platform for Privacy Preferences [P3P] tells user-agents how to discover privacy policy before interacting with an origin server.
While there are several ways to access per-resource metadata (e.g., HTTP headers, WebDAV’s PROPFIND [RFC4918]), the perceived overhead (either in terms of client-perceived latency and/or deployment difficulties) associated with them often precludes their use in these scenarios.

At the same time, it has become more popular to use HTTP as a substrate for non-Web protocols. Sometimes, such protocols need a way to locate one or more resources on a given host.

When this happens, one solution is to designate a "well-known location" for data or services related to the origin overall, so that it can be easily located. However, this approach has the drawback of risking collisions, both with other such designated "well-known locations" and with resources that the origin has created (or wishes to create). Furthermore, defining well-known locations usurps the origin’s control over its own URI space [RFC7320].

To address these uses, this memo defines a path prefix in HTTP(S) URIs for these "well-known locations", "/.well-known/". Future specifications that need to define a resource for such metadata can register their use to avoid collisions and minimise impingement upon origins’ URI space.

Well-known URIs can also be used with other URI schemes, but only when those schemes’ definitions explicitly allow it.

2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

3. Well-Known URIs

A well-known URI is a URI [RFC3986] whose path component begins with the characters "/.well-known/", and whose scheme is "http" [RFC7230], "https" [RFC7230], "ws" [RFC6455], "wss" [RFC6455], or another scheme that has explicitly been specified to use well-known URIs.

Applications that wish to mint new well-known URIs MUST register them, following the procedures in Section 5.1.

For example, if an application registers the name 'example’, the corresponding well-known URI on 'http://www.example.com/' would be 'http://www.example.com/.well-known/example'.
Registered names MUST conform to the segment-nz production in [RFC3986]. This means they cannot contain the "/" character.

Registered names for a specific application SHOULD be correspondingly precise; "squatting" on generic terms is not encouraged. For example, if the Example application wants a well-known location for metadata, an appropriate registered name might be "example-metadata" or even "example.com-metadata", not "metadata".

At a minimum, a registration will reference a specification that defines the format and associated media type(s) to be obtained by dereferencing the well-known URI, along with the URI scheme(s) that the well-known URI can be used with. If no URI schemes are explicitly specified, "http" and "https" are assumed.

Typically, applications will use the default port for the given scheme; if an alternative port is used, it MUST be explicitly specified by the application in question.

It MAY also contain additional information, such as the syntax of additional path components, query strings and/or fragment identifiers to be appended to the well-known URI, or protocol-specific details (e.g., HTTP [RFC7231] method handling).

Note that this specification defines neither how to determine the hostname to use to find the well-known URI for a particular application, nor the scope of the metadata discovered by dereferencing the well-known URI; both should be defined by the application itself.

Also, this specification does not define a format or media-type for the resource located at "/.well-known/" and clients should not expect a resource to exist at that location.

Well-known URIs are rooted in the top of the path’s hierarchy; they are not well-known by definition in other parts of the path. For example, "/.well-known/example" is a well-known URI, whereas "/foo/.well-known/example" is not.

See also Section 4 for Security Considerations regarding well-known locations.

3.1. Registering Well-Known URIs

The "Well-Known URIs" registry is located at "https://www.iana.org/assignments/well-known-uris/". Registration requests can be made by following the instructions located there or...
by sending an email to the "wellknown-uri-review@ietf.org" mailing list.

Registration requests consist of at least the following information:

URI suffix: The name requested for the well-known URI, relative to "/.well-known/"; e.g., "example".

Change controller: For Standards-Track RFCs, state "IETF". For others, give the name of the responsible party. Other details (e.g., postal address, e-mail address, home page URI) may also be included.

Specification document(s): Reference to the document that specifies the field, preferably including a URI that can be used to retrieve a copy of the document. An indication of the relevant sections may also be included, but is not required.

Status: One of "permanent" or "provisional". See guidance below.

Related information: Optionally, citations to additional documents containing further relevant information.

General requirements for registered relation types are described in Section 3.

Standards-defined values have a status of "permanent". Other values can also be registered as permanent, if the Experts find that they are in use, in consultation with the community. Other values should be registered as "provisional".

Provisional entries can be removed by the Experts if - in consultation with the community - the Experts find that they are not in use. The Experts can change a provisional entry’s status to permanent at any time.

Note that well-known URIs can be registered by third parties (including the expert(s)), if the expert(s) determines that an unregistered well-known URI is widely deployed and not likely to be registered in a timely manner otherwise. Such registrations still are subject to the requirements defined, including the need to reference a specification.

4. Security Considerations

Applications minting new well-known URIs, as well as administrators deploying them, will need to consider several security-related issues, including (but not limited to) exposure of sensitive data,
denial-of-service attacks (in addition to normal load issues), server and client authentication, vulnerability to DNS rebinding attacks, and attacks where limited access to a server grants the ability to affect how well-known URIs are served.

4.1. Interaction with Web Browsing

Applications using well-known URIs for "http" or "https" URLs need to be aware that well-known resources will be accessible to Web browsers, and therefore are able to be manipulated by content obtained from other parts of that origin. If an attacker is able to inject content (e.g., through a Cross-Site Scripting vulnerability), they will be able to make potentially arbitrary requests to the well-known resource.

HTTP and HTTPS also use origins as a security boundary for many other mechanisms, including (but not limited to) Cookies [RFC6265], Web Storage [WEBSTORAGE] and many capabilities.

Applications defining well-known locations should not assume that they have sole access to these mechanisms, or that they are the only application using the origin. Depending on the nature of the application, mitigations can include:

- Encrypting sensitive information
- Allowing flexibility in the use of identifiers (e.g., Cookie names) to avoid collisions with other applications
- Using the 'HttpOnly' flag on Cookies to assure that cookies are not exposed to browser scripting languages [RFC6265]
- Using the 'Path' parameter on Cookies to assure that they are not available to other parts of the origin [RFC6265]
- Using X-Content-Type-Options: nosniff [FETCH] to assure that content under attacker control can’t be coaxed into a form that is interpreted as active content by a Web browser

Other good practices include:

- Using an application-specific media type in the Content-Type header, and requiring clients to fail if it is not used
- Using Content-Security-Policy [CSP] to constrain the capabilities of active content (such as HTML [HTML5]), thereby mitigating Cross-Site Scripting attacks
Using Referrer-Policy [REFERRER-POLICY] to prevent sensitive data in URLs from being leaked in the Referer request header.

Avoiding use of compression on any sensitive information (e.g., authentication tokens, passwords), as the scripting environment offered by Web browsers allows an attacker to repeatedly probe the compression space; if the attacker has access to the path of the communication, they can use this capability to recover that information.

4.2. Scoping Applications

This memo does not specify the scope of applicability for the information obtained from a well-known URI, and does not specify how to discover a well-known URI for a particular application.

Individual applications using this mechanism must define both aspects; if this is not specified, security issues can arise from implementation deviations and confusion about boundaries between applications.

Applying metadata discovered in a well-known URI to resources other than those co-located on the same origin risks administrative as well as security issues. For example, allowing "https://example.com/.well-known/example" to apply policy to "https://department.example.com", "https://www.example.com" or even "https://www.example.com:8000" assumes a relationship between hosts where there might be none, giving control to a potential attacker.

Likewise, specifying that a well-known URI on a particular hostname is to be used to bootstrap a protocol can cause a large number of undesired requests. For example, if a well-known HTTPS URI is used to find policy about a separate service such as e-mail, it can result in a flood of requests to Web servers, even if they don’t implement the well-known URI. Such undesired requests can resemble a denial-of-services attack.

4.3. Hidden Capabilities

Applications using well-known locations should consider that some server administrators might be unaware of its existence (especially on operating systems that hide directories whose names begin with "."). This means that if an attacker has write access to the .well-known directory, they would be able to control its contents, possibly without the administrator realising it.
5. IANA Considerations

5.1. The Well-Known URI Registry

This specification updates the registration procedures for the "Well-Known URI" registry, first defined in [RFC5785]; see Section 3.1.

Well-known URIs are registered on the advice of one or more experts (appointed by the IESG or their delegate), with a Specification Required (using terminology from [RFC8126]).

The Experts’ primary considerations in evaluating registration requests are:

- Conformance to the requirements in Section 3
- The availability and stability of the specifying document
- The considerations outlined in Section 4

IANA will direct any incoming requests regarding the registry to this document and, if defined, the processes established by the expert(s); typically, this will mean referring them to the registry Web page.

Upon publication, IANA should:

- Replace all references to RFC 5988 in that registry have been replaced with references to this document.
- Update the status of all existing registrations to "permanent".

6. References

6.1. Normative References


6.2. Informative References


Appendix A. Frequently Asked Questions

Aren’t well-known locations bad for the Web? They are, but for various reasons — both technical and social — they are sometimes necessary. This memo defines a "sandbox" for them, to reduce the risks of collision and to minimise the impact upon pre-existing URIs on sites.

Why /.well-known? It’s short, descriptive, and according to search indices, not widely used.

What impact does this have on existing mechanisms, such as P3P and robots.txt? None, until they choose to use this mechanism.

Why aren’t per-directory well-known locations defined? Allowing every URI path segment to have a well-known location (e.g.,
"/images/.well-known/") would increase the risks of colliding with a pre-existing URI on a site, and generally these solutions are found not to scale well, because they’re too "chatty".

Appendix B. Changes from RFC5785

- Allow non-Web well-known locations
- Adjust IANA instructions
- Update references
- Various other clarifications
- Add "ws" and "wss" schemes

Author’s Address

Mark Nottingham

Email: mnot@mnot.net
URI: https://www.mnot.net/