Network Working Group
Request for Comments: 1286

cisco Systems, Inc.
P. Langille
Digital Equipment Corporation
A. Rijsinghani
Digital Equipment Corporation
K. McCloghrie
Hughes LAN Systems, Inc.

Decker, Langille, Rijsinghani & McCloghrie

Definitions of Managed Objects for Bridges

Status of this Memo

This memo is an extension to the SNMP MIB. This RFC specifies an IAB standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "IAB Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Table of Contents

1. Abstract ... 2
2. The Network Management Framework 2
3. Objects ... 2
3.1 Format of Definitions 3
4. Overview ... 3
4.1 Structure of MIB 4
4.1.1 The dot1dBase Group 7
4.1.3 The dot1dSr Group 7
4.1.4 The dot1dTp Group 7
4.1.5 The dot1dStatic Group 7
4.2 Relationship to Other MIBs 7
4.2.1 Relationship to the 'system' group 8
4.2.2 Relationship to the 'interfaces' group 8
4.3 Textual Conventions 9
5. Definitions .. 9
5.1 Groups in the Bridge MIB 11
5.2 The dot1dBase Group Definitions 11
5.3 The dot1dStp Group Definitions 14
5.4 The dot1dSr Group Definitions 22
5.5 The dot1dTp Group Definitions 28
5.6 The dot1dStatic Group Definitions 34
5.8 Traps for use by Bridges 36
6. Acknowledgments 37

Decker, Langille, Rijsinghani & McCloghrie [Page 1]
1. Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP based internets. In particular it defines objects for managing bridges based on the IEEE 802.1d draft standard between Local Area Network (LAN) segments. Provisions are made for support of transparent and source route bridging. Provisions are also made so that these objects apply to bridges connected by subnetworks other than LAN segments.

2. The Network Management Framework

The Internet-standard Network Management Framework consists of three components. They are:

- **RFC 1155** which defines the SMI, the mechanisms used for describing and naming objects for the purpose of management. **RFC 1212** defines a more concise description mechanism, which is wholly consistent with the SMI.

- **RFC 1156** which defines MIB-I, the core set of managed objects for the Internet suite of protocols. **RFC 1213**, defines MIB-II, an evolution of MIB-I based on implementation experience and new operational requirements.

- **RFC 1157** which defines the SNMP, the protocol used for network access to managed objects.

The Framework permits new objects to be defined for the purpose of experimentation and evaluation.

3. Objects

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) [7] defined in the SMI. In particular, each object has a name, a syntax, and an encoding. The name is an object identifier, an administratively assigned name, which specifies an object type. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the OBJECT DESCRIPTOR, to also refer to the object type.
The syntax of an object type defines the abstract data structure corresponding to that object type. The ASN.1 language is used for this purpose. However, the SMI [3] purposely restricts the ASN.1 constructs which may be used. These restrictions are explicitly made for simplicity.

The encoding of an object type is simply how that object type is represented using the object type’s syntax. Implicitly tied to the notion of an object type’s syntax and encoding is how the object type is represented when being transmitted on the network.

The SMI specifies the use of the basic encoding rules of ASN.1 [8], subject to the additional requirements imposed by the SNMP.

3.1. Format of Definitions

Section 5 contains the specification of all object types contained in this MIB module. The object types are defined using the conventions defined in the SMI, as amended by the extensions specified in [9,10].

4. Overview

A common device present in many networks is the Bridge. This device is used to connect Local Area Network segments below the network layer. There are two major modes defined for this bridging; transparent and source route. The transparent method of bridging is defined in the draft IEEE 802.1d specification [11]. Source route bridging has been defined by I.B.M. and is described in the Token Ring Architecture Reference [12]. IEEE 802.1d is currently working on combining the source route and transparent techniques in a compatible fashion. This memo defines those objects needed for the management of a bridging entity operating in one of these modes.

To be consistent with IAB directives and good engineering practice, an explicit attempt was made to keep this MIB as simple as possible. This was accomplished by applying the following criteria to objects proposed for inclusion:

(1) Start with a small set of essential objects and add only as further objects are needed.

(2) Require objects be essential for either fault or configuration management.

(3) Consider evidence of current use and/or utility.

(4) Limit the total of objects.
(5) Exclude objects which are simply derivable from others in this or other MIBs.

(6) Avoid causing critical sections to be heavily instrumented. The guideline that was followed is one counter per critical section per layer.

4.1. Structure of MIB

Objects in this MIB are arranged into groups. Each group is organized as a set of related objects. The overall structure and assignment of objects to their groups is shown below. Where appropriate the corresponding IEEE 802.1d [11] management object name is also included.

<table>
<thead>
<tr>
<th>Bridge MIB Name</th>
<th>IEEE 802.1d Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1dBridge</td>
<td></td>
</tr>
<tr>
<td>dot1dBase</td>
<td></td>
</tr>
<tr>
<td>BridgeAddress</td>
<td>Bridge.BridgeAddress</td>
</tr>
<tr>
<td>NumPorts</td>
<td>Bridge.NumberOfPorts</td>
</tr>
<tr>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>PortTable</td>
<td></td>
</tr>
<tr>
<td>Port</td>
<td>BridgePort.PortNumber</td>
</tr>
<tr>
<td>IfIndex</td>
<td></td>
</tr>
<tr>
<td>Circuit</td>
<td></td>
</tr>
<tr>
<td>DelayExceededDiscards</td>
<td>.DiscardTransitDelay</td>
</tr>
<tr>
<td>MtuExceededDiscards</td>
<td>.DiscardOnError</td>
</tr>
<tr>
<td>dot1dStp</td>
<td></td>
</tr>
<tr>
<td>ProtocolSpecification</td>
<td>SpanningTreeProtocol</td>
</tr>
<tr>
<td>Priority</td>
<td>.BridgePriority</td>
</tr>
<tr>
<td>TimeSinceTopologyChange</td>
<td>.TimeSinceTopologyChange</td>
</tr>
<tr>
<td>TopChanges</td>
<td>.TopologyChangeCount</td>
</tr>
<tr>
<td>DesignatedRoot</td>
<td>.DesignatedRoot</td>
</tr>
<tr>
<td>RootCost</td>
<td>.RootCost</td>
</tr>
<tr>
<td>RootPort</td>
<td>.RootPort</td>
</tr>
<tr>
<td>MaxAge</td>
<td>.MaxAge</td>
</tr>
<tr>
<td>HelloTime</td>
<td>.HelloTime</td>
</tr>
<tr>
<td>HoldTime</td>
<td>.HoldTime</td>
</tr>
<tr>
<td>ForwardDelay</td>
<td>.ForwardDelay</td>
</tr>
<tr>
<td>BridgeMaxAge</td>
<td>.BridgeMaxAge</td>
</tr>
<tr>
<td>BridgeHelloTime</td>
<td>.BridgeHelloTime</td>
</tr>
<tr>
<td>BridgeForwardDelay</td>
<td>.BridgeForwardDelay</td>
</tr>
<tr>
<td>PortTable</td>
<td></td>
</tr>
<tr>
<td>Port</td>
<td>SpanningTreeProtocolPort</td>
</tr>
<tr>
<td>Priority</td>
<td>.PortPriority</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decker, Langille, Rijssinghani & McCloghrie [Page 4]
State .SpanningTreeState
Enable
PathCost .PortPathCost
DesignatedRoot .DesignatedRoot
DesignatedCost .DesignatedCost
DesignatedBridge .DesignatedBridge
DesignatedPort .DesignatedPort
ForwardTransitions

dot1dSr
PortTable
 Port
 HopCount SourceRoutingPort
 .PortHopCount
 LocalSegment .SegmentNumber
 BridgeNum .BridgeNumber
 TargetSegment
 LargestFrame .LargestFrameSize
 STESpanMode .LimitedBroadcastMode
 SpecInFrames BridgePort
 .ValidSRFramesReceived
 SpecOutFrames .ValidSRForwardedOutbound
 ApeInFrames
 ApeOutFrames .BroadcastFramesForwarded
 SteInFrames
 SteOutFrames .BroadcastFramesForwarded
 SegmentMismatchDiscards .DiscardInvalidRI
 DuplicateSegmentDiscards .LanIdMismatch
 HopCountExceededDiscards .FramesDiscardedHopCountExceeded

dot1dTp
 LearnedEntryDiscards BridgeFilter.DatabaseSize
 .NumDynamic,NumStatic
 AgingTime BridgeFilter.AgingTime
FdbTable
 Address
 Status
 Port
PortTable
 Port
 MaxInfo
 InFrames BridgePort.FramesReceived
 OutFrames .ForwardOutbound
 InDiscards .DiscardInbound

dot1dStatic
 StaticTable
 Address
 ReceivePort
 AllowedToGoTo
Status

The following IEEE 802.1d management objects have not been included in the Bridge MIB for the indicated reasons.

<table>
<thead>
<tr>
<th>IEEE 802.1d Object</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge.BridgeName</td>
<td>Same as sysDescr (MIB II)</td>
</tr>
<tr>
<td>Bridge.BridgeUpTime</td>
<td>Same as sysUpTime (MIB II)</td>
</tr>
<tr>
<td>Bridge.PortAddresses</td>
<td>Same as ifPhysAddress (MIB II)</td>
</tr>
<tr>
<td>BridgePort.PortName</td>
<td>Same as ifDescr (MIB II)</td>
</tr>
<tr>
<td>BridgePort.PortType</td>
<td>Same as ifType (MIB II)</td>
</tr>
<tr>
<td>BridgePort.RoutingType</td>
<td>Derivable from the implemented groups</td>
</tr>
<tr>
<td>SpanningTreeProtocol</td>
<td></td>
</tr>
<tr>
<td>.BridgeIdentifier</td>
<td>Combination of dot1dStpPriority and dot1dBaseBridgeAddress</td>
</tr>
<tr>
<td>.TopologyChange</td>
<td>Since this is transitory, it is not considered useful.</td>
</tr>
<tr>
<td>SpanningTreeProtocolPort</td>
<td></td>
</tr>
<tr>
<td>.Uptime</td>
<td>Same as ifLastChange (MIB II)</td>
</tr>
<tr>
<td>.PortIdentifier</td>
<td>Combination of dot1dStpPortNum and dot1dStpPortPriority</td>
</tr>
<tr>
<td>.TopologyChangeAcknowledged</td>
<td>Since this is transitory, it is not considered useful.</td>
</tr>
<tr>
<td>.DiscardLackOfBuffers</td>
<td>Redundant</td>
</tr>
<tr>
<td>Transmission Priority</td>
<td></td>
</tr>
<tr>
<td>.TransmissionPriorityName</td>
<td>These objects are not required as per the Pics Proforma and not considered useful.</td>
</tr>
<tr>
<td>.OutboundUserPriority</td>
<td></td>
</tr>
<tr>
<td>.OutboundAccessPriority</td>
<td></td>
</tr>
<tr>
<td>SourceRoutingPort</td>
<td>The Source Routing Supplement, at the time of this writing, is not stable. The following objects were NOT included in this MIB because they are redundant or not considered useful.</td>
</tr>
<tr>
<td>.LimitedBroadcastEnable</td>
<td></td>
</tr>
<tr>
<td>BridgePort.DupLanIdOrTreeError</td>
<td></td>
</tr>
<tr>
<td>.DiscardLackOfBuffers</td>
<td></td>
</tr>
<tr>
<td>.DiscardErrorDetails</td>
<td></td>
</tr>
<tr>
<td>.DiscardTargetLANInoperable</td>
<td></td>
</tr>
</tbody>
</table>
4.1.1. The dot1dBase Group

This mandatory group contains the objects which are applicable to all types of bridges.

4.1.2. The dot1dStp Group

This group contains the objects that denote the bridge’s state with respect to the Spanning Tree Protocol. If a node does not implement the Spanning Tree Protocol, this group will not be implemented. This group is applicable to any transparent only, source route, or SRT bridge which implements the Spanning Tree Protocol.

4.1.3. The dot1dSr Group

This group contains the objects that describe the entity's state with respect to source route bridging. If source routing is not supported, this group will not be implemented. This group is applicable to source route only, and SRT bridges.

4.1.4. The dot1dTp Group

This group contains objects that describe the entity’s state with respect to transparent bridging. If transparent bridging is not supported, this group will not be implemented. This group is applicable to transparent only and SRT bridges.

4.1.5. The dot1dStatic Group

This group contains objects that describe the entity’s state with respect to destination-address filtering. If destination-address filtering is not supported, this group will not be implemented. This group is applicable to any type of bridge which performs destination-address filtering.

4.2. Relationship to Other MIBs

As described above, some IEEE 802.1d management objects have not been included in this MIB because they overlap with objects in other MIBs applicable to a bridge implementing this MIB. In particular, it is assumed that a bridge implementing this MIB will also implement (at
least) the ‘system’ group and the ‘interfaces’ group defined in MIB-II [6].

4.2.1. Relationship to the ‘system’ group

In MIB-II, the ‘system’ group is defined as being mandatory for all systems such that each managed entity contains one instance of each object in the ‘system’ group. Thus, those objects apply to the entity as a whole irrespective of whether the entity’s sole functionality is bridging, or whether bridging is only a subset of the entity’s functionality.

4.2.2. Relationship to the ‘interfaces’ group

In MIB-II, the ‘interfaces’ group is defined as being mandatory for all systems and contains information on an entity’s interfaces, where each interface is thought of as being attached to a ‘subnetwork’. (Note that this term is not to be confused with ‘subnet’ which refers to an addressing partitioning scheme used in the Internet suite of protocols.) The term ‘segment’ is used in this memo to refer to such a subnetwork, whether it be an Ethernet segment, a ‘ring’, a WAN link, or even an X.25 virtual circuit.

Implicit in this Bridge MIB is the notion of ports on a bridge. Each of these ports is associated with one interface of the ‘interfaces’ group, and in most situations, each port is associated with a different interface. However, there are situations in which multiple ports are associated with the same interface. An example of such a situation would be several ports each corresponding one-to-one with several X.25 virtual circuits but all on the same interface.

Each port is uniquely identified by a port number. A port number has no mandatory relationship to an interface number, but in the simple case a port number will have the same value as the corresponding interface’s interface number. Port numbers are in the range (1..dot1dBaseNumPorts).

Some entities perform other functionality as well as bridging through the sending and receiving of data on their interfaces. In such situations, only a subset of the data sent/received on an interface is within the domain of the entity’s bridging functionality. This subset is considered to be delineated according to a set of protocols, with some protocols being bridged, and other protocols not being bridged. For example, in an entity which exclusively performed bridging, all protocols would be considered as being bridged, whereas in an entity which performed IP routing on IP datagrams and only bridged other protocols, only the non-IP data would be considered as being bridged.
Thus, this Bridge MIB (and in particular, its counters) are applicable only to that subset of the data on an entity’s interfaces which is sent/received for a protocol being bridged. All such data is sent/received via the ports of the bridge.

4.3. Textual Conventions

The datatypes, MacAddress, BridgeId and Timeout, are used as textual conventions in this document. These textual conventions have NO effect on either the syntax nor the semantics of any managed object. Objects defined using these conventions are always encoded by means of the rules that define their primitive type. Hence, no changes to the SMI or the SNMP are necessary to accommodate these textual conventions which are adopted merely for the convenience of readers.

5. Definitions

RFC1286-MIB DEFINITIONS ::= BEGIN

IMPORTS
 Counter, Gauge, TimeTicks
 FROM RFC1155-SMI
 mib-2
 FROM RFC1213-MIB
 OBJECT-TYPE
 FROM RFC-1212
 TRAP-TYPE
 FROM RFC-1215;

-- All representations of MAC addresses in this MIB Module use, -- as a textual convention (i.e. this convention does not affect -- their encoding), the data type:

MacAddress ::= OCTET STRING (SIZE (6)) -- a 6 octet address in -- the "canonical" order -- defined by IEEE 802.1a, i.e., as if it were transmitted least -- significant bit first, even though 802.5 (in contrast to other -- 802.x protocols) requires MAC addresses to be transmitted most -- significant bit first. -- 16-bit addresses, if needed, are represented by setting their -- upper 4 octets to all 0's, i.e., AAFF would be represented -- as 00000000AAFF.

-- Similarly, all representations of Bridge-Id in this MIB Module -- use, as a textual convention (i.e. this convention does not affect -- their encoding), the data type:
BridgeId ::= OCTET STRING (SIZE (8)) -- the Bridge-Identifier as used in the Spanning Tree Protocol to uniquely identify a bridge. Its first two octets contain a priority value and its last 6 octets contain the MAC address used to refer to a bridge in a unique fashion (typically, the numerically smallest MAC address of all ports on the bridge).

Several objects in this MIB module represent values of timers used by the Spanning Tree Protocol. In this MIB, these timers have values in units of hundredths of a second (i.e. 1/100 secs). These timers, when stored in a Spanning Tree Protocol’s BPDU, are in units of 1/256 seconds. Note, however, that 802.1d/D9 specifies a settable granularity of no more than 1 second for these timers. To avoid ambiguity, a data type is defined here as a textual convention and all representation of these timers in this MIB module are defined using this data type. An algorithm is also defined for converting between the different units, to ensure a timer’s value is not distorted by multiple conversions.

The data type is:

Timeout ::= INTEGER -- a STP timer in units of 1/100 seconds

To convert a Timeout value into a value in units of 1/256 seconds, the following algorithm should be used:

```
  b = floor( (n * 256) / 100)
```

where:
- floor = quotient [ignore remainder]
- n is the value in 1/100 second units
- b is the value in 1/256 second units

To convert the value from 1/256 second units back to 1/100 seconds, the following algorithm should be used:

```
n = ceiling( (b * 100) / 256)
```

where:
- ceiling = quotient [if remainder is 0], or quotient + 1 [if remainder is non-zero]
- n is the value in 1/100 second units
- b is the value in 1/256 second units

Note: it is important that the arithmetic operations are done in the order specified (i.e., multiply first, divide second).

dot1dBridge OBJECT IDENTIFIER ::= { mib-2 17 }
-- groups in the Bridge MIB

dot1dBase OBJECT IDENTIFIER ::= { dot1dBridge 1 }
dot1dStp OBJECT IDENTIFIER ::= { dot1dBridge 2 }
dot1dSr OBJECT IDENTIFIER ::= { dot1dBridge 3 }
dot1dTp OBJECT IDENTIFIER ::= { dot1dBridge 4 }
dot1dStatic OBJECT IDENTIFIER ::= { dot1dBridge 5 }

-- the dot1dBase group

-- Implementation of the dot1dBase group is mandatory for all
-- bridges.

dot1dBaseBridgeAddress OBJECT-TYPE
SYNTAX MacAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION "The MAC address used by this bridge when it must
be referred to in a unique fashion. It is
recommended that this be the numerically smallest
MAC address of all ports that belong to this
bridge. However it is only required to be unique.
When concatenated with dot1dStpPriority a unique
BridgeIdentifier is formed which is used in the
Spanning Tree Protocol."
REFERENCE
"P802.1d/D9, July 14, 1989: Sections 6.4.1.1.3 and 3.12.5"
::= { dot1dBase 1 }

dot1dBaseNumPorts OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of ports controlled by this bridging
entity."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.4.1.1.3"
::= { dot1dBase 2 }

dot1dBaseType OBJECT-TYPE
SYNTAX INTEGER {
unknown(1),
transparency-only(2),
sourceroute-only(3),
srt(4)
}

ACCESS read-only
STATUS mandatory

DESCRIPTION
"Indicates what type of bridging this bridge can perform. If a bridge is actually performing a certain type of bridging this will be indicated by entries in the port table for the given type."

::= { dot1dBase 3 }

-- The Generic Bridge Port Table

::= { dot1dBasePortTable 1 }

Dot1dBasePortEntry ::= SEQUENCE {
 dot1dBasePort INTEGER,
 dot1dBasePortIfIndex INTEGER,
 dot1dBasePortCircuit OBJECT IDENTIFIER,
 dot1dBasePortDelayExceededDiscards
}
Counter,
dot1dBasePortMtuExceededDiscards
Counter

dot1dBasePort OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The port number of the port for which this entry contains bridge management information."
::= { dot1dBasePortEntry 1 }

dot1dBasePortIfIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The value of the instance of the ifIndex object, defined in [4,6], for the interface corresponding to this port."
::= { dot1dBasePortEntry 2 }

dot1dBasePortCircuit OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-only
STATUS mandatory
DESCRIPTION "For a port which (potentially) has the same value of dot1dBasePortIfIndex as another port on the same bridge, this object contains the name of an object instance unique to this port. For example, in the case where multiple ports correspond one-to-one with multiple X.25 virtual circuits, this value might identify an (e.g., the first) object instance associated with the X.25 virtual circuit corresponding to this port.

For a port which has a unique value of dot1dBasePortIfIndex, this object can have the value { 0 0 }."
::= { dot1dBasePortEntry 3 }

dot1dBasePortDelayExceededDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of frames discarded by this port due
to excessive transit delay through the bridge. It
is incremented by both transparent and source
route bridges."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.6.1.1.3"
 ::= { dot1dBasePortEntry 4 }

dot1dBasePortMtuExceededDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of frames discarded by this port due
to an excessive size. It is incremented by both
transparent and source route bridges."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.6.1.1.3"
 ::= { dot1dBasePortEntry 5 }

-- the dot1dStp group

-- Implementation of the dot1dStp group is optional. It is
-- implemented by those bridges that support the Spanning Tree
-- Protocol. Transparent, Source Route, and SRT bridges will
-- implement this group only if they support the Spanning Tree
-- Protocol.

dot1dStpProtocolSpecification OBJECT-TYPE
SYNTAX INTEGER {
 unknown(1),
 decLb100(2),
 ieee8021d(3)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An indication of what version of the Spanning
Tree Protocol is being run. The value
'decLb100(2)' indicates the DEC LANbridge 100
Spanning Tree protocol. IEEE 802.1d
implementations will return 'ieee8021d(3)'. If
future versions of the IEEE Spanning Tree Protocol
are released that are incompatible with the
current version a new value will be defined."
::= { dot1dStp 1 }

dot1dStpPriority OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The value of the write-able portion of the Bridge ID, i.e., the first two octets of the (8 octet long) Bridge ID. The other (last) 6 octets of the Bridge ID are given by the value of dot1dBaseBridgeAddress."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.7"
::= { dot1dStp 2 }

dot1dStpTimeSinceTopologyChange OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The time (in hundredths of a second) since the last time a topology change was detected by the bridge entity."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.8.1.1.3"
::= { dot1dStp 3 }

dot1dStpTopChanges OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of topology changes detected by this bridge since the management entity was last reset or initialized."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.8.1.1.3"
::= { dot1dStp 4 }

dot1dStpDesignatedRoot OBJECT-TYPE
SYNTAX BridgeId
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The bridge identifier of the root of the spanning tree as determined by the Spanning Tree Protocol as executed by this node. This value is used as
the Root Identifier parameter in all Configuration Bridge PDUs originated by this node."

REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.1"
::= { dot1dStp 5 }

dot1dStpRootCost OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The cost of the path to the root as seen from this bridge."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.2"
::= { dot1dStp 6 }

dot1dStpRootPort OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The port number of the port which offers the lowest cost path from this bridge to the root bridge."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.3"
::= { dot1dStp 7 }

dot1dStpMaxAge OBJECT-TYPE
SYNTAX Timeout
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The maximum age of Spanning Tree Protocol information learned from the network on any port before it is discarded, in units of hundredths of a second. This is the actual value that this bridge is currently using."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.4"
::= { dot1dStp 8 }

dot1dStpHelloTime OBJECT-TYPE
SYNTAX Timeout
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The amount of time between the transmission of Configuration bridge PDUs by this node on any port when it is the root of the spanning tree or trying to become so, in units of hundredths of a second. This is the actual value that this bridge is currently using."

REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.5"

::= { dot1dStp 9 }

dot1dStpHoldTime OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This time value determines the interval length during which no more than two Configuration bridge PDUs shall be transmitted by this node, in units of hundredths of a second."

REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.14"

::= { dot1dStp 10 }

dot1dStpForwardDelay OBJECT-TYPE
SYNTAX Timeout
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This time value, measured in units of hundredths of a second, controls how fast a port changes its spanning state when moving towards the Forwarding state. The value determines how long the port stays in a particular state before moving to the next state. For example, how long a port stays in the Listening state when moving from Blocking to Learning. This value is also used, when a topology change has been detected and is underway, to age all dynamic entries in the Forwarding Database. [Note that this value is the one that this bridge is currently using, in contrast to dot1dStpBridgeForwardDelay which is the value that this bridge and all others would start using if/when this bridge were to become the root.]"

REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.6"

::= { dot1dStp 11 }
dot1dStpBridgeMaxAge OBJECT-TYPE
SYNTAX Timeout (600..4000)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The value that all bridges use for MaxAge when
this bridge is acting as the root. Note that
802.1d/D9 specifies that the range for this
parameter is related to the value of
dot1dStpBridgeHelloTime. The granularity of this
timer is specified by 802.1d/D9 to be 1 second.
An agent may return a badValue error if a set is
attempted to a value which is not a whole number
of seconds."

REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.8"
::= { dot1dStp 12 }

dot1dStpBridgeHelloTime OBJECT-TYPE
SYNTAX Timeout (100..1000)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The value that all bridges use for HelloTime when
this bridge is acting as the root. The
granularity of this timer is specified by
802.1d/D9 to be 1 second. An agent may return a
badValue error if a set is attempted to a value
which is not a whole number of seconds."

REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.9"
::= { dot1dStp 13 }

dot1dStpBridgeForwardDelay OBJECT-TYPE
SYNTAX Timeout (400..3000)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The value that all bridges use for ForwardDelay
when this bridge is acting as the root. Note that
802.1d/D9 specifies that the range for this
parameter is related to the value of
dot1dStpBridgeMaxAge. The granularity of this
timer is specified by 802.1d/D9 to be 1 second.
An agent may return a badValue error if a set is
attempted to a value which is not a whole number
of seconds."

REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.3.10"
::= { dot1dStp 14 }

-- The Spanning Tree Port Table

dot1dStpPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dStpPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table that contains port-specific information for the Spanning Tree Protocol."
::= { dot1dStpPortTable 1 }

Dot1dStpPortEntry OBJECT-TYPE
SYNTAX Dot1dStpPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of information maintained by every port about the Spanning Tree Protocol state for that port."
INDEX { dot1dStpPort }
::= { dot1dStpPortTable 1 }

Dot1dStpPortEntry ::= SEQUENCE {
 dot1dStpPort Port INTEGER,
 dot1dStpPortPriority Port INTEGER,
 dot1dStpPortState Port INTEGER,
 dot1dStpPortEnable Port INTEGER,
 dot1dStpPortPathCost Port INTEGER,
 dot1dStpPortDesignatedRoot BridgeId,
 dot1dStpPortDesignatedCost Port INTEGER,
 dot1dStpPortDesignatedBridge BridgeId,
 dot1dStpPortDesignatedPort OCTET STRING,
 dot1dStpPortForwardTransitions Counter
}
dot1dStpPort OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The port number of the port for which this entry contains Spanning Tree Protocol management information."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.8.2.1.2"
::= { dot1dStpPortEntry 1 }

dot1dStpPortPriority OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The value of the priority field which is contained in the first (in network byte order) octet of the (2 octet long) Port ID. The other octet of the Port ID is given by the value of dot1dStpPort."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.5.1"
::= { dot1dStpPortEntry 2 }

dot1dStpPortState OBJECT-TYPE
SYNTAX INTEGER {
 disabled(1),
 blocking(2),
 listening(3),
 learning(4),
 forwarding(5),
 broken(6)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The port’s current state as defined by application of the Spanning Tree Protocol. This state controls what action a port takes on reception of a frame. If the bridge has detected a port that is malfunctioning it will place that port into the broken(6) state. For ports which are disabled (see dot1dStpPortEnable), this object will have a value of disabled(1)."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.5.2"
 ::= { dot1dStpPortEntry 3 }

dot1dStpPortEnable OBJECT-TYPE
SYNTAX INTEGER {
 enabled(1),
 disabled(2)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The enabled/disabled status of the port."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.5.2"
 ::= { dot1dStpPortEntry 4 }

dot1dStpPortPathCost OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The contribution of this port to the path cost of
paths towards the spanning tree root which include
this port."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.5.3"
 ::= { dot1dStpPortEntry 5 }

dot1dStpPortDesignatedRoot OBJECT-TYPE
SYNTAX BridgeId
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The unique Bridge Identifier of the Bridge
recorded as the Root in the Configuration BPDUs
transmitted by the Designated Bridge for the
segment to which the port is attached."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.5.4"
 ::= { dot1dStpPortEntry 6 }

dot1dStpPortDesignatedCost OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The path cost of the Designated Port of the
segment connected to this port. This value is compared to the Root Path Cost field in received bridge PDUs."

REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.5.5"

::= { dot1dStpPortEntry 7 }

dot1dStpPortDesignatedBridge OBJECT-TYPE
SYNTAX BridgeId
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The Bridge Identifier of the bridge which this port considers to be the Designated Bridge for this port’s segment."

REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.5.6"

::= { dot1dStpPortEntry 8 }

dot1dStpPortDesignatedPort OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (2))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The Port Identifier of the port on the Designated Bridge for this port’s segment."

REFERENCE
"P802.1d/D9, July 14, 1989: Section 4.5.5.7"

::= { dot1dStpPortEntry 9 }

dot1dStpPortForwardTransitions OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times this port has transitioned from the Learning state to the Forwarding state."

::= { dot1dStpPortEntry 10 }

-- the dot1dSr group

-- Implementation of the dot1dSr group is optional. It is implemented by those bridges that support the source route bridging mode, including Source Route and SRT bridges.
dot1dSrPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dSrPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table that contains information about every
port that is associated with this source route
bridge."
::= { dot1dSr 1 }

dot1dSrPortEntry OBJECT-TYPE
SYNTAX Dot1dSrPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of information for each port of a source
route bridge."
INDEX { dot1dSrPort }
::= { dot1dSrPortTable 1 }

Dot1dSrPortEntry ::= SEQUENCE {
 dot1dSrPort
 INTEGER,
 dot1dSrPortHopCount
 INTEGER,
 dot1dSrPortLocalSegment
 INTEGER,
 dot1dSrPortBridgeNum
 INTEGER,
 dot1dSrPortTargetSegment
 INTEGER,
 dot1dSrPortLargestFrame
 INTEGER,
 dot1dSrPortSTESpanMode
 INTEGER,
 dot1dSrPortSpecInFrames
 Counter,
 dot1dSrPortSpecOutFrames
 Counter,
 dot1dSrPortApeInFrames
 Counter,
 dot1dSrPortApeOutFrames
 Counter,
 dot1dSrPortSteInFrames
 Counter,
 dot1dSrPortSteOutFrames
 Counter,
}
dot1dSrPortSegmentMismatchDiscards
Counter,
dot1dSrPortDuplicateSegmentDiscards
Counter,
dot1dSrPortHopCountExceededDiscards
Counter
)

dot1dSrPort OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The port number of the port for which this entry
contains Source Route management information."
::= { dot1dSrPortEntry 1 }

dot1dSrPortHopCount OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The maximum number of routing descriptors allowed
in an All Paths or Spanning Tree Explorer frames."
::= { dot1dSrPortEntry 2 }

dot1dSrPortLocalSegment OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The segment number that uniquely identifies the
segment to which this port is connected. Current
source routing protocols limit this value to the
range: 0 through 4095. A value of 65535 signifies
that no segment number is assigned to this port."
::= { dot1dSrPortEntry 3 }

dot1dSrPortBridgeNum OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A bridge number uniquely identifies a bridge when
more than one bridge is used to span the same two
segments. Current source routing protocols limit
this value to the range: 0 through 15. A value of
65535 signifies that no bridge number is assigned
to this bridge.
::= { dot1dSrPortEntry 4 }

dot1dSrPortTargetSegment OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The segment number that corresponds to the target segment this port is considered to be connected to by the bridge. Current source routing protocols limit this value to the range: 0 through 4095. A value of 65535 signifies that no target segment is assigned to this port."
::= { dot1dSrPortEntry 5 }

-- It would be nice if we could use ifMtu as the size of the -- largest frame, but we can’t because ifMtu is defined to be -- the size that the (inter-)network layer can use which can -- differ from the MAC layer (especially if several layers of -- encapsulation are used).

dot1dSrPortLargestFrame OBJECT-TYPE
SYNTAX INTEGER {
 dot1dSrMtu516 (516),
 dot1dSrMtu1500 (1500),
 dot1dSrMtu2052 (2052),
 dot1dSrMtu4472 (4472),
 dot1dSrMtu8144 (8144),
 dot1dSrMtu11407 (11407), -- yes this is correct don’t
dot1dSrMtu17800 (17800), -- ask me where it came from.
dot1dSrMtu65535 (65535)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The maximum size of the INFO field (LLC and above) that this port can send/receive. It does not include any MAC level (framing) octets. The value of this object is used by this bridge to determine whether a modification of the LargestFrame (LF, see [14]) field of the Routing Control field of the Routing Information Field is necessary. Valid values as defined by the 802.5 source routing bridging specification [14] are 516, 1500, 2052, 4472, 8144, 11407, 17800, and 65535 octets. Behavior of the port when an illegal
value is written is implementation specific. It is recommended that a reasonable legal value be chosen."

::= { dot1dSrPortEntry 6 }

dot1dSrPortSTESpanMode OBJECT-TYPE
SYNTAX INTEGER {
 auto-span(1),
 disabled(2),
 forced(3)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Determines how this port behaves when presented with a Spanning Tree Explorer frame. The value 'disabled(2)' indicates that the port will not accept or send Spanning Tree Explorer packets; any STE packets received will be silently discarded. The value 'forced(3)' indicates the port will always accept and propagate Spanning Tree Explorer frames. This allows a manually configured Spanning Tree for this class of packet to be configured. Note that unlike transparent bridging this is not catastrophic to the network if there are loops. The value 'auto-span(1)' can only be returned by a bridge that both implements the Spanning Tree Protocol and has use of the protocol enabled on this port. The behavior of the port for Spanning Tree Explorer frames is determined by the state of dot1dStpPortState. If the port is in the 'forwarding' state, the frame will be accepted or propagated. Otherwise it will be silently discarded."

::= { dot1dSrPortEntry 7 }

dot1dSrPortSpecInFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of specifically routed frames that have been received from this port’s segment."

::= { dot1dSrPortEntry 8 }

dot1dSrPortSpecOutFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of specifically routed frames that this port has transmitted on its segment."
::= { dot1dSrPortEntry 9 }

dot1dSrPortApeInFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of all paths explorer frames that have been received by this port from its segment."
::= { dot1dSrPortEntry 10 }

dot1dSrPortApeOutFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of all paths explorer frames that have been transmitted by this port on its segment."
::= { dot1dSrPortEntry 11 }

dot1dSrPortSteInFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of spanning tree explorer frames that have been received by this port from its segment."
::= { dot1dSrPortEntry 12 }

dot1dSrPortSteOutFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of spanning tree explorer frames that have been transmitted by this port on its segment."
::= { dot1dSrPortEntry 13 }

dot1dSrPortSegmentMismatchDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of explorer frames that have been discarded by this port because the routing descriptor field contained an invalid adjacent segment value."

::= { dot1dSrPortEntry 14 }

dot1dSrPortDuplicateSegmentDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of frames that have been discarded by this port because the routing descriptor field contained a duplicate segment identifier."

::= { dot1dSrPortEntry 15 }

dot1dSrPortHopCountExceededDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of explorer frames that have been discarded by this port because the Routing Information Field has exceeded the maximum route descriptor length."

::= { dot1dSrPortEntry 16 }

-- the dot1dTp group

-- Implementation of the dot1dTp group is optional. It is implemented by those bridges that support the transparentbridging mode. A transparent or SRT bridge will implement this group.

dot1dTpLearnedEntryDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of Forwarding Database entries, which have been or would have been learnt, but have been discarded due to a lack of space to store them in the Forwarding Database. If this counter is increasing, it indicates that the Forwarding Database is regularly becoming full (a condition which has unpleasant performance effects
on the subnetwork). If this counter has a
significant value but is not presently increasing,
itis indicates that the problem has been occurring
but is not persistent."

REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.7.1.1.3"

::= { dot1dTp 1 }

dot1dTpAgingTime OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The timeout period in seconds for aging out
dynamically learned forwarding information."

REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.7.1.1.3"

::= { dot1dTp 2 }

-- The Forwarding Database for Transparent Bridges

dot1dTpFdbTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dTpFdbEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table that contains information about unicast
entries for which the bridge has forwarding and/or
filtering information. This information is used
by the transparent bridging function in
determining how to propagate a received frame."

::= { dot1dTp 3 }

dot1dTpFdbEntry OBJECT-TYPE
SYNTAX Dot1dTpFdbEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Information about a specific unicast MAC address
for which the bridge has some forwarding and/or
filtering information."

INDEX { dot1dTpFdbAddress }

::= { dot1dTpFdbTable 1 }

Dot1dTpFdbEntry ::= SEQUENCE {
 dot1dTpFdbAddress
MacAddress,
dot1dTpFdbPort
INTEGER,
dot1dTpFdbStatus
INTEGER
)
dot1dTpFdbAddress OBJECT-TYPE
SYNTAX MacAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A unicast MAC address for which the bridge has
forwarding and/or filtering information."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 3.9.1, 3.9.2"
::= { dot1dTpFdbEntry 1 }
dot1dTpFdbPort OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Either the value '0', or the port number of the
port on which a frame having a source address
equal to the value of the corresponding instance
of dot1dTpFdbAddress has been seen. A value of
'0' indicates that the port number has not been
learned but that the bridge does have some
forwarding/filtering information about this
address (e.g. in the dot1dStaticTable).
Implementors are encouraged to assign the port
value to this object whenever it is learned even
for addresses for which the corresponding value of
dot1dTpFdbStatus is not learned(3)."
::= { dot1dTpFdbEntry 2 }
dot1dTpFdbStatus OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 invalid(2),
 learned(3),
 self(4),
 mgmt(5)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The status of this entry. The meanings of the values are:

other(1) : none of the following. This would include the case where some other MIB object (not the corresponding instance of dot1dTpFdbPort, nor an entry in the dot1dStaticTable) is being used to determine if and how frames addressed to the value of the corresponding instance of dot1dTpFdbAddress are being forwarded.

invalid(2) : this entry is not longer valid (e.g., it was learned but has since aged-out), but has not yet been flushed from the table.

learned(3) : the value of the corresponding instance of dot1dTpFdbPort was learned, and is being used.

self(4) : the value of the corresponding instance of dot1dTpFdbAddress represents one of the bridge’s addresses. The corresponding instance of dot1dTpFdbPort indicates which of the bridge’s ports has this address.

mgmt(5) : the value of the corresponding instance of dot1dTpFdbAddress is also the value of an existing instance of dot1dStaticAddress."

::= { dot1dTpFdbEntry 3 }

-- Port Table for Transparent Bridges

dot1dTpPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dTpPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table that contains information about every port that is associated with this transparent
dot1dTpPortEntry OBJECT-TYPE
SYNTAX Dot1dTpPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of information for each port of a transparent bridge."
INDEX { dot1dTpPort }
::= { dot1dTpPortTable 1 }

Dot1dTpPortEntry ::= SEQUENCE {
 dot1dTpPort
 INTEGER,
 dot1dTpPortMaxInfo
 INTEGER,
 dot1dTpPortInFrames
 Counter,
 dot1dTpPortOutFrames
 Counter,
 dot1dTpPortInDiscards
 Counter
}

dot1dTpPort OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The port number of the port for which this entry contains Transparent bridging management information."
::= { dot1dTpPortEntry 1 }

-- It would be nice if we could use ifMtu as the size of the
-- largest INFO field, but we can't because ifMtu is defined
-- to be the size that the (inter-)network layer can use which
-- can differ from the MAC layer (especially if several layers
-- of encapsulation are used).

dot1dTpPortMaxInfo OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

bridge.
"The maximum size of the INFO (non-MAC) field that this port will receive or transmit."

::= { dot1dTpPortEntry 2 }

dot1dTpPortInFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of frames that have been received by this port from its segment. Note that a frame received on the interface corresponding to this port is only counted by this object if and only if it is for a protocol being processed by the local bridging function."

REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.6.1.1.3"

::= { dot1dTpPortEntry 3 }

dot1dTpPortOutFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of frames that have been transmitted by this port to its segment. Note that a frame transmitted on the interface corresponding to this port is only counted by this object if and only if it is for a protocol being processed by the local bridging function."

REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.6.1.1.3"

::= { dot1dTpPortEntry 4 }

dot1dTpPortInDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Count of valid frames received which were discarded (i.e., filtered) by the Forwarding Process."

REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.6.1.1.3"

::= { dot1dTpPortEntry 5 }
-- The Static (Destination-Address Filtering) Database

-- Implementation of this group is optional.

dot1dStaticTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dStaticEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table containing filtering information configured into the bridge by (local or network) management specifying the set of ports to which frames received from specific ports and containing specific destination addresses are allowed to be forwarded. The value of zero in this table as the port number from which frames with a specific destination address are received, is used to specify all ports for which there is no specific entry in this table for that particular destination address. Entries are valid for unicast and for group/broadcast addresses."

REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.7.2"

::= { dot1dStatic 1 }

dot1dStaticEntry OBJECT-TYPE
SYNTAX Dot1dStaticEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Filtering information configured into the bridge by (local or network) management specifying the set of ports to which frames received from a specific port and containing a specific destination address are allowed to be forwarded."

REFERENCE
"P802.1d/D9, July 14, 1989: Section 6.7.2"

INDEX { dot1dStaticAddress, dot1dStaticReceivePort }

::= { dot1dStaticTable 1 }

Dot1dStaticEntry ::= SEQUENCE {
 dot1dStaticAddress
 MacAddress,
 dot1dStaticReceivePort
 INTEGER,
 dot1dStaticAllowedToGoTo
}
OCTET STRING,
dot1dStaticStatus
INTEGER
}

dot1dStaticAddress OBJECT-TYPE
SYNTAX MacAddress
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The destination MAC address in a frame to which
this entry’s filtering information applies. This
object can take the value of a unicast address, a
group address or the broadcast address."
REFERENCE
"P802.1d/D9, July 14, 1989: Section 3.9.1, 3.9.2"
::= { dot1dStaticEntry 1 }

dot1dStaticReceivePort OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Either the value ’0’, or the port number of the
port from which a frame must be received in order
for this entry’s filtering information to apply.
A value of zero indicates that this entry applies
on all ports of the bridge for which there is no
other applicable entry."
::= { dot1dStaticEntry 2 }

dot1dStaticAllowedToGoTo OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The set of ports to which frames received from a
specific port and destined for a specific MAC
address, are allowed to be forwarded. Each octet
within the value of this object specifies a set of
eight ports, with the first octet specifying ports
1 through 8, the second octet specifying ports 9
through 16, etc. Within each octet, the most
significant bit represents the lowest numbered
port, and the least significant bit represents the
highest numbered port. Thus, each port of the
bridge is represented by a single bit within the
value of this object. If that bit has a value of
'1' then that port is included in the set of ports; the port is not included if its bit has a value of '0'. (Note that the setting of the bit corresponding to the port from which a frame is received is irrelevant.)"

::= { dot1dStaticEntry 3 }

dot1dStaticStatus OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 invalid(2),
 permanent(3),
 deleteOnReset(4),
 deleteOnTimeout(5)
}

ACCESS read-write
STATUS mandatory
DESCRIPTION
"This object indicates the status of this entry.
other(1) - this entry is currently in use but the conditions under which it will remain so are different from each of the following values.
invalid(2) - writing this value to the object removes the corresponding entry.
permanent(3) - this entry is currently in use and will remain so after the next reset of the bridge.
deleteOnReset(4) - this entry is currently in use and will remain so until the next reset of the bridge.
deleteOnTimeout(5) - this entry is currently in use and will remain so until it is aged out."

::= { dot1dStaticEntry 4 }

-- Traps for use by Bridges

-- Traps for the Spanning Tree Protocol

newRoot TRAP-TYPE
ENTERPRISE dot1dBridge
DESCRIPTION
"The newRoot trap indicates that the sending agent has become the new root of the Spanning Tree; the trap is sent by a bridge soon after its election as the new root, e.g., upon expiration of the Topology Change Timer immediately subsequent to
its election."
::= 1

topologyChange TRAP-TYPE
ENTERPRISE dot1dBridge
DESCRIPTION
"A topologyChange trap is sent by a bridge when
any of its configured ports transitions from the
Learning state to the Forwarding state, or from
the Forwarding state to the Blocking state. The
trap is not sent if a newRoot trap is sent for the
same transition."
::= 2

END

6. Acknowledgments

This document was produced on behalf of the Bridge Sub-Working Group
of the SNMP Working Group of the Internet Engineering Task Force.
Over the course of its deliberations, the working group received four
separate documents for consideration as the basis for its work. The
first was submitted by Stan Froyd of Advanced Computer
Communications; the second by Richard Fox of SynOptics; the third by
Eric Decker of cisco Inc. and Keith McCloghrie of Hughes LAN Systems;
and the fourth by Paul Langille and Anil Rijsinghani of Digital
Equipment Corp. After considering the submissions, the working group
chose to proceed with a document formed as a conjunction of the
latter two submissions. This document is the result.

The authors wish to thank the members of the Bridge Working Group for
their many comments and suggestions which improved this effort. In
particular, Fred Baker (chairman of the working group) of ACC, Steve
Sherry of Xyplex, and Frank Kastenholz of Clearpoint Research Corp.
Others members of the Bridge Working Group who contributed to this
effort are:

Bill Anderson, Mitre
Karl Auerbach, Epilogue
Fred Baker, ACC (chair)
Terry Bradley, Wellfleet
Ted Brunner, Bellcore
Jeffrey Buffum, Apollo
Chris ChioTasso, Fibronics
Anthony Chung, HLS
Chuck Davin, MIT-LCS
Andy Davis, Spider
Eric Decker, cisco
7. References

8. Security Considerations

Security issues are not discussed in this memo.
9. Authors’ Addresses

Eric B. Decker
Cisco Systems, Inc.
1525 O’Brien Dr.
Menlo Park, CA 94025
Phone: (415) 326-1941
Email: cire@cisco.com

Paul Langille
Digital Equipment Corporation
Digital Drive, MK02-2/K03
Merrimack, NH 03054
Phone: (603) 884-4045
EMail: langille@edwin.enet.dec.com

Anil Rijsinghani
Digital Equipment Corporation
153 Taylor St.
Littleton, MA 01460
Phone: (508) 952-3520
EMail: anil@levers.enet.dec.com

Keith McCloghrie
Hughes LAN Systems
1225 Charleston Road
Mountain View, CA 94043
Phone: (415) 966-7934
EMail: kzm@hls.com