IPv4 Multicast Routing MIB

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes managed objects used for managing IP Multicast Routing for IPv4, independent of the specific multicast routing protocol in use.

Table of Contents

1 Introduction .. 2
2 The SNMP Management Framework 2
3 Overview ... 3
4 Definitions .. 4
5 IANA Considerations ... 22
6 Security Considerations 22
7 Intellectual Property Notice 23
8 Acknowledgements ... 23
9 Authors’ Addresses .. 24
10 References ... 25
11 Full Copyright Statement 27
1. Introduction

This MIB describes objects used for managing IP Multicast Routing [16], independent of the specific multicast routing protocol [17-21] in use. Managed objects specific to particular multicast routing protocols are specified elsewhere. Similarly, this MIB does not support management of multicast routing for other address families, including IPv6. Such management may be supported by other MIBs.

2. The SNMP Management Framework

The SNMP Management Framework presently consists of five major components:

- An overall architecture, described in RFC 2571 [1].
- Mechanisms for describing and naming objects and events for the purpose of management. The first version of this Structure of Management Information (SMI) is called SMIv1 and described in STD 16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The second version, called SMIv2, is described in STD 58, RFC 2578 [5], STD 58, RFC 2579 [6] and STD 58, RFC 2580 [7].
- Message protocols for transferring management information. The first version of the SNMP message protocol is called SNMPv1 and described in STD 15, RFC 1157 [8]. A second version of the SNMP message protocol, which is not an Internet standards track protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC 1906 [10]. The third version of the message protocol is called SNMPv3 and described in RFC 1906 [10], RFC 2572 [11] and RFC 2574 [12].
- Protocol operations for accessing management information. The first set of protocol operations and associated PDU formats is described in STD 15, RFC 1157 [8]. A second set of protocol operations and associated PDU formats is described in RFC 1905 [13].
- A set of fundamental applications described in RFC 2573 [14] and the view-based access control mechanism described in RFC 2575 [15].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the mechanisms defined in the SMI.
This memo specifies a MIB module that is compliant to the SMIv2. A MIB conforming to the SMIv1 can be produced through the appropriate translations. The resulting translated MIB must be semantically equivalent, except where objects or events are omitted because no translation is possible (use of Counter64). Some machine readable information in SMIv2 will be converted into textual descriptions in SMIv1 during the translation process. However, this loss of machine readable information is not considered to change the semantics of the MIB.

3. Overview

This MIB module contains one scalar and five tables. The tables are:

1. the IP Multicast Route Table containing multicast routing information for IP datagrams sent by particular sources to the IP multicast groups known to a router.

2. the IP Multicast Routing Next Hop Table containing information on the next-hops for the routing IP multicast datagrams. Each entry is one of a list of next-hops on outgoing interfaces for particular sources sending to a particular multicast group address.

3. the IP Multicast Routing Interface Table containing multicast routing information specific to interfaces.

4. the IP Multicast Scope Boundary Table containing the boundaries configured for multicast scopes [22].

5. the IP Multicast Scope Name Table containing human-readable names of multicast scope.
4. Definitions

IPMRROUTE-STD-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, mib-2,
Integer32, Counter32, Counter64, Gauge32,
IpAddress, TimeTicks FROM SNMPv2-SMI
RowStatus, TEXTUAL-CONVENTION,
TruthValue FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF
SnmpAdminString FROM SNMP-FRAMEWORK-MIB
InterfaceIndexOrZero,
InterfaceIndex FROM IF-MIB
IANAipRouteProtocol,
IANAipMRouteProtocol FROM IANA-RTPROTO-MIB;

ipMRRouteStdMIB MODULE-IDENTITY
LAST-UPDATED "200009220000Z" -- September 22, 2000
ORGANIZATION "IETF IDMR Working Group"
CONTACT-INFO
 " Dave Thaler
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399
 US

 Phone: +1 425 703 8835
 EMail: dthaler@microsoft.com"
DESCRIPTION
"The MIB module for management of IP Multicast routing, but
independent of the specific multicast routing protocol in
use."

REVISION "200009220000Z" -- September 22, 2000
DESCRIPTION
"Initial version, published as RFC 2932."
 ::= { mib-2 83 }

-- Textual Conventions

LanguageTag ::= TEXTUAL-CONVENTION

DISPLAY-HINT "100a"
STATUS current
DESCRIPTION
"An RFC 1766-style language tag, with all alphabetic
characters converted to lowercase. This restriction is
intended to make the lexical ordering imposed by SNMP useful
when applied to language tags. Note that it is theoretically possible for a valid language tag to exceed the allowed length of this syntax, and thus be impossible to represent with this syntax. Sampling of language tags in current use on the Internet suggests that this limit does not pose a serious problem in practice.

SYNTAX
OCTET STRING (SIZE (1..100))

-- Top-level structure of the MIB

ipMRouteMIBObjects OBJECT IDENTIFIER ::= { ipMRouteStdMIB 1 }

ipMRoute OBJECT IDENTIFIER ::= { ipMRouteMIBObjects 1 }

-- the IP Multicast Routing MIB-Group

-- a collection of objects providing information about
-- IP Multicast Groups

ipMRouteEnable OBJECT-TYPE
SYNTAX INTEGER { enabled(1), disabled(2) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION "The enabled status of IP Multicast routing on this router."
::= { ipMRoute 1 }

ipMRouteEntryCount OBJECT-TYPE
SYNTAX Gauge32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of rows in the ipMRouteTable. This can be used to monitor the multicast routing table size."
::= { ipMRoute 7 }

ipMRouteTable OBJECT-TYPE
SYNTAX SEQUENCE OF IpMRouteEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The (conceptual) table containing multicast routing information for IP datagrams sent by particular sources to the IP multicast groups known to this router."
::= { ipMRoute 2 }
ipMRouteEntry OBJECT-TYPE
SYNTAX IpMRouteEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "An entry (conceptual row) containing the multicast routing
information for IP datagrams from a particular source and
addressed to a particular IP multicast group address.
Discontinuities in counters in this entry can be detected by
observing the value of ipMRouteUpTime."
INDEX { ipMRouteGroup,
 ipMRouteSource,
 ipMRouteSourceMask }
 ::= { ipMRouteTable 1 }

IpMRouteEntry ::= SEQUENCE {
 ipMRouteGroup IpAddress,
 ipMRouteSource IpAddress,
 ipMRouteSourceMask IpAddress,
 ipMRouteUpstreamNeighbor IpAddress,
 ipMRouteInIfIndex InterfaceIndexOrZero,
 ipMRouteUpTime TimeTicks,
 ipMRouteExpTime TimeTicks,
 ipMRoutePkt Counter32,
 ipMRouteDifferentInIfPackets Counter32,
 ipMRouteOctets Counter32,
 ipMRouteProtocol IANAipMRouteProtocol,
 ipMRouteRtProto IANAipRouteProtocol,
 ipMRouteAddress IpAddress,
 ipMRouteRtMask IpAddress,
 ipMRouteRtType INTEGER,
 ipMRouteHCOctets Counter64
}

ipMRouteGroup OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The IP multicast group address for which this entry
contains multicast routing information."
 ::= { ipMRouteEntry 1 }

ipMRouteSource OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The network address which when combined with the corresponding value of ipMRouteSourceMask identifies the sources for which this entry contains multicast routing information."

::= { ipMRouteEntry 2 }

ipMRouteSourceMask OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The network mask which when combined with the corresponding value of ipMRouteSource identifies the sources for which this entry contains multicast routing information."

::= { ipMRouteEntry 3 }

ipMRouteUpstreamNeighbor OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The address of the upstream neighbor (e.g., RPF neighbor) from which IP datagrams from these sources to this multicast address are received, or 0.0.0.0 if the upstream neighbor is unknown (e.g., in CBT)."

::= { ipMRouteEntry 4 }

ipMRouteInIfIndex OBJECT-TYPE
SYNTAX InterfaceIndexOrZero
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The value of ifIndex for the interface on which IP datagrams sent by these sources to this multicast address are received. A value of 0 indicates that datagrams are not subject to an incoming interface check, but may be accepted on multiple interfaces (e.g., in CBT)."

::= { ipMRouteEntry 5 }

ipMRouteUpTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The time since the multicast routing information represented by this entry was learned by the router."

::= { ipMRouteEntry 6 }
ipMRouteExpiryTime OBJECT-TYPE
 SYNTAX TimeTicks
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The minimum amount of time remaining before this entry will
 be aged out. The value 0 indicates that the entry is not
 subject to aging."
 ::= { ipMRouteEntry 7 }

ipMRoutePkts OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of packets which this router has received from
 these sources and addressed to this multicast group
 address."
 ::= { ipMRouteEntry 8 }

ipMRouteDifferentInIfPackets OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of packets which this router has received from
 these sources and addressed to this multicast group address,
 which were dropped because they were not received on the
 interface indicated by ipMRouteInIfIndex. Packets which are
 not subject to an incoming interface check (e.g., using CBT)
 are not counted."
 ::= { ipMRouteEntry 9 }

ipMRouteOctets OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of octets contained in IP datagrams which were
 received from these sources and addressed to this multicast
 group address, and which were forwarded by this router."
 ::= { ipMRouteEntry 10 }

ipMRouteProtocol OBJECT-TYPE
 SYNTAX IANAipMRouteProtocol
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION

"The multicast routing protocol via which this multicast forwarding entry was learned."
 ::= { ipMRRouteEntry 11 }

ipMRRouteRtProto OBJECT-TYPE
 SYNTAX IANAipRouteProtocol
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The routing mechanism via which the route used to find the upstream or parent interface for this multicast forwarding entry was learned. Inclusion of values for routing protocols is not intended to imply that those protocols need be supported."
 ::= { ipMRRouteEntry 12 }

ipMRRouteRtAddress OBJECT-TYPE
 SYNTAX IpAddress
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The address portion of the route used to find the upstream or parent interface for this multicast forwarding entry."
 ::= { ipMRRouteEntry 13 }

ipMRRouteRtMask OBJECT-TYPE
 SYNTAX IpAddress
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The mask associated with the route used to find the upstream or parent interface for this multicast forwarding entry."
 ::= { ipMRRouteEntry 13 }

ipMRRouteRtType OBJECT-TYPE
 SYNTAX INTEGER {
 unicast (1), -- Unicast route used in multicast RIB
 multicast (2) -- Multicast route
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The reason the given route was placed in the (logical) multicast Routing Information Base (RIB). A value of unicast means that the route would normally be placed only in the unicast RIB, but was placed in the multicast RIB (instead or in addition) due to local configuration, such as when running PIM over RIP. A value of multicast means that
the route was explicitly added to the multicast RIB by the routing protocol, such as DVMRP or Multiprotocol BGP."
::= { ipMRouteEntry 15 }

ipMRRouteHCOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets contained in IP datagrams which were received from these sources and addressed to this multicast group address, and which were forwarded by this router. This object is a 64-bit version of ipMRRouteOctets."
::= { ipMRouteEntry 16 }

--
-- The IP Multicast Routing Next Hop Table
--

ipMRRouteNextHopTable OBJECT-TYPE
SYNTAX SEQUENCE OF IpMRRouteNextHopEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The (conceptual) table containing information on the next-hops on outgoing interfaces for routing IP multicast datagrams. Each entry is one of a list of next-hops on outgoing interfaces for particular sources sending to a particular multicast group address."
::= { ipMRoute 3 }

ipMRRouteNextHopEntry OBJECT-TYPE
SYNTAX IpMRRouteNextHopEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry (conceptual row) in the list of next-hops on outgoing interfaces to which IP multicast datagrams from particular sources to a IP multicast group address are routed. Discontinuities in counters in this entry can be detected by observing the value of ipMRRouteUpTime."
INDEX { ipMRRouteNextHopGroup, ipMRRouteNextHopSource, ipMRRouteNextHopSourceMask, ipMRRouteNextHopIfIndex, ipMRRouteNextHopAddress }
::= { ipMRRouteNextHopTable 1 }

IpMRRouteNextHopEntry ::= SEQUENCE {
 ipMRRouteNextHopGroup IpAddress,
 ipMRRouteNextHopSource IpAddress,
 ipMRRouteNextHopSourceMask IpAddress,
 ipMRRouteNextHopIfIndex IpAddress,
 ipMRRouteNextHopAddress IpAddress,

McCloghrie, et al. Standards Track
ipMRouteNextHopSource OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The network address which when combined with the corresponding value of ipMRouteNextHopSourceMask identifies the sources for which this entry specifies a next-hop on an outgoing interface."
::= { ipMRouteNextHopEntry 1 }

ipMRouteNextHopSourceMask OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The network mask which when combined with the corresponding value of ipMRouteNextHopSource identifies the sources for which this entry specifies a next-hop on an outgoing interface."
::= { ipMRouteNextHopEntry 2 }

ipMRouteNextHopIfIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The interface index of the outgoing interface on which this entry specifies a next-hop."
::= { ipMRouteNextHopEntry 3 }

ipMRouteNextHopGroup OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The IP multicast group for which this entry specifies a next-hop on an outgoing interface."
::= { ipMRouteNextHopEntry 1 }
"The ifIndex value of the interface for the outgoing interface for this next-hop."
::= { ipMRouteNextHopEntry 4 }

ipMRouteNextHopAddress OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The address of the next-hop specific to this entry. For most interfaces, this is identical to ipMRouteNextHopGroup. NBMA interfaces, however, may have multiple next-hop addresses out a single outgoing interface."
::= { ipMRouteNextHopEntry 5 }

ipMRouteNextHopState OBJECT-TYPE
SYNTAX INTEGER { pruned(1), forwarding(2) }
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An indication of whether the outgoing interface and next-hop represented by this entry is currently being used to forward IP datagrams. The value 'forwarding' indicates it is currently being used; the value 'pruned' indicates it is not."
::= { ipMRouteNextHopEntry 6 }

ipMRouteNextHopUpTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The time since the multicast routing information represented by this entry was learned by the router."
::= { ipMRouteNextHopEntry 7 }

ipMRouteNextHopExpiryTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The minimum amount of time remaining before this entry will be aged out. If ipMRouteNextHopState is pruned(1), the remaining time until the prune expires and the state reverts to forwarding(2). Otherwise, the remaining time until this entry is removed from the table. The time remaining may be copied from ipMRouteExpiryTime if the protocol in use for this entry does not specify next-hop timers. The value 0
indicates that the entry is not subject to aging.
::= { ipMRouteNextHopEntry 8 }

ipMRouteNextHopClosestMemberHops OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The minimum number of hops between this router and any
member of this IP multicast group reached via this next-hop
on this outgoing interface. Any IP multicast datagrams for
the group which have a TTL less than this number of hops
will not be forwarded to this next-hop."
::= { ipMRouteNextHopEntry 9 }

ipMRouteNextHopProtocol OBJECT-TYPE
SYNTAX IANAipMRouteProtocol
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The routing mechanism via which this next-hop was learned."
::= { ipMRouteNextHopEntry 10 }

ipMRouteNextHopPkts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of packets which have been forwarded using this
route."
::= { ipMRouteNextHopEntry 11 }

--
-- The Multicast Routing Interface Table
--

ipMRouteInterfaceTable OBJECT-TYPE
SYNTAX SEQUENCE OF IpMRouteInterfaceEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The (conceptual) table containing multicast routing
information specific to interfaces."
::= { ipMRoute 4 }

ipMRouteInterfaceEntry OBJECT-TYPE
SYNTAX IpMRouteInterfaceEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "An entry (conceptual row) containing the multicast routing
 information for a particular interface."
INDEX
 { ipMRouteInterfaceIfIndex }
::= { ipMRouteInterfaceTable 1 }

IpMRouteInterfaceEntry ::= SEQUENCE {
 ipMRouteInterfaceIfIndex InterfaceIndex,
 ipMRouteInterfaceTtl Integer32,
 ipMRouteInterfaceProtocol IANAipMRouteProtocol,
 ipMRouteInterfaceRateLimit Integer32,
 ipMRouteInterfaceInMcastOctets Counter32,
 ipMRouteInterfaceOutMcastOctets Counter32,
 ipMRouteInterfaceHCInMcastOctets Counter64,
 ipMRouteInterfaceHCOutMcastOctets Counter64
}
SYNTAX Integer32
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The rate-limit, in kilobits per second, of forwarded
multicast traffic on the interface. A rate-limit of 0
indicates that no rate limiting is done."
DEFVAL { 0 }
::= { ipMRouteInterfaceEntry 4 }

ipMRouteInterfaceInMcastOctets OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The number of octets of multicast packets that have arrived
on the interface, including framing characters. This object
is similar to ifInOctets in the Interfaces MIB, except that
only multicast packets are counted."
::= { ipMRouteInterfaceEntry 5 }

ipMRouteInterfaceOutMcastOctets OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The number of octets of multicast packets that have been
sent on the interface."
::= { ipMRouteInterfaceEntry 6 }

ipMRouteInterfaceHCInMcastOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The number of octets of multicast packets that have arrived
on the interface, including framing characters. This object
is a 64-bit version of ipMRouteInterfaceInMcastOctets. It
is similar to ifHCInOctets in the Interfaces MIB, except
that only multicast packets are counted."
::= { ipMRouteInterfaceEntry 7 }

ipMRouteInterfaceHCOutMcastOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The number of octets of multicast packets that have been
sent on the interface. This object is a 64-bit version of
ipMRouteInterfaceOutMcastOctets.

::= { ipMRouteInterfaceEntry 8 }

--
-- The IP Multicast Scope Boundary Table
--

ipMRouteBoundaryTable OBJECT-TYPE
SYNTAX SEQUENCE OF IpMRouteBoundaryEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The (conceptual) table listing the router’s scoped
multicast address boundaries."

::= { ipMRoute 5 }

ipMRouteBoundaryEntry OBJECT-TYPE
SYNTAX IpMRouteBoundaryEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry (conceptual row) in the ipMRouteBoundaryTable
representing a scoped boundary."
INDEX { ipMRouteBoundaryIfIndex, ipMRouteBoundaryAddress,
 ipMRouteBoundaryAddressMask }

::= { ipMRouteBoundaryTable 1 }

IpMRouteBoundaryEntry ::= SEQUENCE {
 ipMRouteBoundaryIfIndex InterfaceIndex,
 ipMRouteBoundaryAddress IpAddress,
 ipMRouteBoundaryAddressMask IpAddress,
 ipMRouteBoundaryStatus RowStatus
}

ipMRouteBoundaryIfIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The IfIndex value for the interface to which this boundary
applies. Packets with a destination address in the
associated address/mask range will not be forwarded out this
interface."

::= { ipMRouteBoundaryEntry 1 }

ipMRouteBoundaryAddress OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The group address which when combined with the
 corresponding value of ipMRouteBoundaryAddressMask
 identifies the group range for which the scoped boundary
 exists. Scoped addresses must come from the range 239.x.x.x
 as specified in RFC 2365."
 ::= { ipMRouteBoundaryEntry 2 }
ipMRouteBoundaryAddressMask OBJECT-TYPE
 SYNTAX IpAddress
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The group address mask which when combined with the
 corresponding value of ipMRouteBoundaryAddress identifies
 the group range for which the scoped boundary exists."
 ::= { ipMRouteBoundaryEntry 3 }
ipMRouteBoundaryStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this row, by which new entries may be
 created, or old entries deleted from this table."
 ::= { ipMRouteBoundaryEntry 4 }

--
-- The IP Multicast Scope Name Table
--
ipMRouteScopeNameTable OBJECT-TYPE
 SYNTAX SEQUENCE OF IpMRouteScopeNameEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The (conceptual) table listing the multicast scope names."
 ::= { ipMRoute 6 }
ipMRouteScopeNameEntry OBJECT-TYPE
 SYNTAX IpMRouteScopeNameEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry (conceptual row) in the ipMRouteScopeNameTable
 representing a multicast scope name."
INDEX { ipMRouteScopeNameAddress,
ipMRouteScopeNameAddressMask,
IMPLIED ipMRouteScopeNameLanguage }
::= { ipMRouteScopeNameTable 1 }

IpMRouteScopeNameEntry ::= SEQUENCE {
ipMRouteScopeNameAddress IpAddress,
ipMRouteScopeNameAddressMask IpAddress,
ipMRouteScopeNameLanguage LanguageTag,
ipMRouteScopeNameString SnmpAdminString,
ipMRouteScopeNameDefault TruthValue,
ipMRouteScopeNameStatus RowStatus
}

ipMRouteScopeNameAddress OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The group address which when combined with the
corresponding value of ipMRouteScopeNameAddressMask
identifies the group range associated with the multicast
scope. Scoped addresses must come from the range
239.x.x.x."
::= { ipMRouteScopeNameEntry 1 }

ipMRouteScopeNameAddressMask OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The group address mask which when combined with the
corresponding value of ipMRouteScopeNameAddress identifies
the group range associated with the multicast scope."
::= { ipMRouteScopeNameEntry 2 }

ipMRouteScopeNameLanguage OBJECT-TYPE
SYNTAX LanguageTag
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The RFC 1766-style language tag associated with the scope
name."
::= { ipMRouteScopeNameEntry 3 }

ipMRouteScopeNameString OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-create
STATUS current
DESCRIPTION "The textual name associated with the multicast scope. The value of this object should be suitable for displaying to end-users, such as when allocating a multicast address in this scope. When no name is specified, the default value of this object should be the string 239.x.x.x/y with x and y replaced appropriately to describe the address and mask length associated with the scope."

::= { ipMRoutScopeNameEntry 4 }

ipMRoutScopeNameDefault OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-create
STATUS current
DESCRIPTION "If true, indicates a preference that the name in the following language should be used by applications if no name is available in a desired language."
DEFVAL { false }
::= { ipMRoutScopeNameEntry 5 }

ipMRoutScopeNameStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION "The status of this row, by which new entries may be created, or old entries deleted from this table."
::= { ipMRoutScopeNameEntry 6 }

-- conformance information

ipMRoutMIBConformance
OBJECT IDENTIFIER ::= { ipMRoutStdMIB 2 }

ipMRoutMIBCompliances
OBJECT IDENTIFIER ::= { ipMRoutMIBConformance 1 }

ipMRoutMIBGroups OBJECT IDENTIFIER ::= { ipMRoutMIBConformance 2 }

-- compliance statements

ipMRoutMIBCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION "The compliance statement for the IP Multicast MIB."
MODULE -- this module
MANDATORY-GROUPS { ipMRoutMIBBasicGroup,
GROUP ipMRouteMIBRouteGroup

DESCRIPTION
"This group is mandatory if the router supports administratively-scoped multicast address boundaries."

OBJECT ipMRouteBoundaryStatus
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT ipMRouteScopeNameStatus
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

GROUP ipMRouteMIBHCInterfaceGroup

DESCRIPTION
"This group is mandatory only for those network interfaces for which the value of the corresponding instance of ifSpeed is greater than 20,000,000 bits/second."

::= { ipMRouteMIBCompliances 1 }

-- units of conformance

ipMRouteMIBBasicGroup OBJECT-GROUP

OBJECTS { ipMRouteEnable, ipMRouteEntryCount,
 ipMRouteUpstreamNeighbor, ipMRouteInIfIndex,
 ipMRouteUpTime, ipMRouteExpireTime,
 ipMRouteNextHopState,
 ipMRouteNextHopUpTime,
 ipMRouteNextHopExpireTime,
 ipMRouteNextHopProtocol,
 ipMRouteNextHopPkts,
 ipMRouteInterfaceTtl,
 ipMRouteInterfaceProtocol, ipMRouteInterfaceRateLimit,
 ipMRouteInterfaceInMcastOctets,
 ipMRouteInterfaceOutMcastOctets,
 ipMRouteProtocol
 }

STATUS current
DESCRIPTION
"A collection of objects to support basic management of IP Multicast routing."

::= { ipMRouteMIBGroups 1 }

McCloghrie, et al. Standards Track [Page 20]
ipMRouteMIBHopCountGroup OBJECT-GROUP
 OBJECTS { ipMRouteNextHopClosestMemberHops }
 STATUS current
 DESCRIPTION
 "A collection of objects to support management of the use of
 hop counts in IP Multicast routing."
 ::= { ipMRouteMIBGroups 2 }

ipMRouteMIBBoundaryGroup OBJECT-GROUP
 OBJECTS { ipMRouteBoundaryStatus, ipMRouteScopeNameString,
 ipMRouteScopeNameDefault, ipMRouteScopeNameStatus }
 STATUS current
 DESCRIPTION
 "A collection of objects to support management of scoped
 multicast address boundaries."
 ::= { ipMRouteMIBGroups 3 }

ipMRouteMIBPktsOutGroup OBJECT-GROUP
 OBJECTS { ipMRouteNextHopPkts }
 STATUS current
 DESCRIPTION
 "A collection of objects to support management of packet
 counters for each outgoing interface entry of a route."
 ::= { ipMRouteMIBGroups 4 }

ipMRouteMIBHCInterfaceGroup OBJECT-GROUP
 OBJECTS { ipMRouteInterfaceHCInMcastOctets,
 ipMRouteInterfaceHCOutMcastOctets,
 ipMRouteHCOctets }
 STATUS current
 DESCRIPTION
 "A collection of objects providing information specific to
 high speed (greater than 20,000,000 bits/second) network
 interfaces."
 ::= { ipMRouteMIBGroups 5 }

ipMRouteMIBRouteGroup OBJECT-GROUP
 OBJECTS { ipMRouteRtProto, ipMRouteRtAddress,
 ipMRouteRtMask, ipMRouteRtType }
 STATUS current
 DESCRIPTION
 "A collection of objects providing information on the
 relationship between multicast routing information, and the
 IP Forwarding Table."
 ::= { ipMRouteMIBGroups 6 }

ipMRouteMIBPktsGroup OBJECT-GROUP
 OBJECTS { ipMRoutePkts, ipMRouteDifferentInIfPackets,
5. IANA Considerations

The ipMRouteRtProto, ipMRouteNextHopProtocol, ipMRouteInterfaceProtocol, and ipMRouteProtocol use textual conventions imported from the IANA-RTPROTO-MIB. The purpose of defining these textual conventions in a separate MIB module is to allow additional values to be defined without having to issue a new version of this document. The Internet Assigned Numbers Authority (IANA) is responsible for the assignment of all Internet numbers, including various SNMP-related numbers; it will administer the values associated with these textual conventions.

The rules for additions or changes to the IANA-RTPROTO-MIB are outlined in the DESCRIPTION clause associated with its MODULE-IDENTITY statement.

The current versions of the IANA-RTPROTO-MIB can be accessed from the IANA home page at: "http://www.iana.org/".

6. Security Considerations

This MIB contains readable objects whose values provide information related to multicast routing, including information on what machines are sending to which groups. There are also a number of objects that have a MAX-ACCESS clause of read-write and/or read-create, such as those which allow an administrator to configure multicast boundaries.

While unauthorized access to the readable objects is relatively innocuous, unauthorized access to the write-able objects could cause a denial of service, or could cause wider distribution of packets intended only for local distribution. Hence, the support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations.

SNMPv1 by itself is such an insecure environment. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and SET (change/create/delete) the objects in this MIB.
It is recommended that the implementers consider the security features as provided by the SNMPv3 framework. Specifically, the use of the User-based Security Model RFC 2574 [12] and the View-based Access Control Model RFC 2575 [15] is recommended.

It is then a customer/user responsibility to ensure that the SNMP entity giving access to this MIB, is properly configured to give access to those objects only to those principals (users) that have legitimate rights to access them.

7. Intellectual Property Notice

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF’s procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

8. Acknowledgements

This MIB module was updated based on feedback from the IETF’s Inter-Domain Multicast Routing (IDMR) Working Group.
9. Authors’ Addresses

Keith McCloghrie
cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706

Phone: +1 408 526 5260
EMail: kzm@cisco.com

Dino Farinacci
Procket Networks
3850 North First Street
San Jose, CA 95134

Phone: +1 408-954-7909
Email: dino@procket.com

Dave Thaler
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

Phone: +1 425 703 8835
EMail: dthaler@microsoft.com
10. References

11. Full Copyright Statement

Copyright (C) The Internet Society (2000). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the
Internet Society.