ACE Working Group L. Seitz Internet-Draft RISE SICS Intended status: Standards Track G. Selander Expires:February 9,April 22, 2018 Ericsson E. Wahlstroem (no affiliation) S. Erdtman Spotify AB H. Tschofenig ARM Ltd.August 8,October 19, 2017 Authentication and Authorization for Constrained Environments (ACE)draft-ietf-ace-oauth-authz-07draft-ietf-ace-oauth-authz-08 Abstract This specification defines a framework for authentication and authorization in Internet of Things (IoT) environments. The framework is based on a set of building blocks including OAuth 2.0 and CoAP, thus making a well-known and widely used authorization solution suitable for IoT devices. Existing specifications are used where possible, but where the constraints of IoT devices require it, extensions are added and profiles are defined. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire onFebruary 9,April 22, 2018. Copyright Notice Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . .34 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . .45 3. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1. OAuth 2.0 . . . . . . . . . . . . . . . . . . . . . . . .67 3.2. CoAP . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4. Protocol Interactions . . . . . . . . . . . . . . . . . . . .910 5. Framework . . . . . . . . . . . . . . . . . . . . . . . . . .1314 5.1. Discovering AuthorizationGrantsServers . . . . . . . . . . . . 15 5.1.1. Unauthorized Resource Request Message . . . . . . .14. 15 5.1.2. AS Information . . . . . . . . . . . . . . . . . . . 16 5.2. Authorization Grants . . . . . . . . . . . . . . . . . . 17 5.3. Client Credentials . . . . . . . . . . . . . . . . . . .15 5.3.18 5.4. AS Authentication . . . . . . . . . . . . . . . . . . . .15 5.4.18 5.5. The'Authorize'Authorization Endpoint . . . . . . . . . . . . . . .. 16 5.5.18 5.6. The'Token'Token Endpoint . . . . . . . . . . . . . . . . . .16 5.5.1.. 19 5.6.1. Client-to-AS Request . . . . . . . . . . . . . . . .16 5.5.2.19 5.6.2. AS-to-Client Response . . . . . . . . . . . . . . . .19 5.5.3.22 5.6.3. Error Response . . . . . . . . . . . . . . . . . . .21 5.5.4.24 5.6.4. Request and Response Parameters . . . . . . . . . . .22 5.5.4.1.25 5.6.4.1. Audience . . . . . . . . . . . . . . . . . . . .22 5.5.4.2.25 5.6.4.2. Grant Type . . . . . . . . . . . . . . . . . . .22 5.5.4.3.25 5.6.4.3. Token Type . . . . . . . . . . . . . . . . . . .23 5.5.4.4.26 5.6.4.4. Profile . . . . . . . . . . . . . . . . . . . . .23 5.5.4.5.26 5.6.4.5. Confirmation . . . . . . . . . . . . . . . . . .23 5.5.5.26 5.6.5. Mapping parameters to CBOR . . . . . . . . . . . . .26 5.6.27 5.7. The 'Introspect' Endpoint . . . . . . . . . . . . . . . .26 5.6.1.28 5.7.1. RS-to-AS Request . . . . . . . . . . . . . . . . . .27 5.6.2.29 5.7.2. AS-to-RS Response . . . . . . . . . . . . . . . . . .27 5.6.3.29 5.7.3. Error Response . . . . . . . . . . . . . . . . . . .28 5.6.4.30 5.7.4. Client Token . . . . . . . . . . . . . . . . . . . .29 5.6.5.31 5.7.5. Mapping Introspection parameters to CBOR . . . . . .31 5.7.33 5.8. The Access Token . . . . . . . . . . . . . . . . . . . .31 5.7.1.33 5.8.1. The 'Authorization Information' Endpoint . . . . . .32 5.7.2.34 5.8.2. Token Expiration . . . . . . . . . . . . . . . . . .3235 6. Security Considerations . . . . . . . . . . . . . . . . . . .3336 6.1. Unprotected AS Information . . . . . . . . . . . . . . . 37 6.2. Use of Nonces for Replay Protection . . . . . . . . . . . 37 6.3. Combining profiles . . . . . . . . . . . . . . . . . . . 37 6.4. Error responses . . . . . . . . . . . . . . . . . . . . . 37 7. Privacy Considerations . . . . . . . . . . . . . . . . . . .3538 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . .3539 8.1. OAuth Introspection Response Parameter Registration . . .3539 8.2. OAuth Parameter Registration . . . . . . . . . . . . . .3639 8.3. OAuth Access Token Types . . . . . . . . . . . . . . . .3640 8.4. OAuth Token Type CBOR Mappings . . . . . . . .. . . . . . . . . . . 3640 8.4.1. Registration Template . . . . . . . . . . . . . . . .3740 8.4.2. Initial Registry Contents . . . . . . . . . . . . . .3740 8.5. CBOR Web Token Claims . . . . . . . . . . . . . . . . . .3741 8.6. ACE OAuth Profile Registry . . . . . . . . . . . . . . .. . . 3841 8.6.1. Registration Template . . . . . . . . . . . . . . . .3841 8.7. OAuth CBOR Parameter Mappings Registry . . . . . . . . .. . . 3841 8.7.1. Registration Template . . . . . . . . . . . . . . . .3842 8.7.2. Initial Registry Contents . . . . . . . . . . . . . .3942 8.8. Introspection Endpoint CBOR Mappings Registry . . . . . .4144 8.8.1. Registration Template . . . . . . . . . . . . . . . .4144 8.8.2. Initial Registry Contents . . . . . . . . . . . . . .4145 8.9. CoAP Option Number Registration . . . . . . . . . . . . .43 8.10. CWT Confirmation Methods Registry . . . . . . . . . . . . 44 8.10.1. Registration Template . . . . . . . . . . . . . . . 44 8.10.2. Initial Registry Contents . . . . . . . . . . . . . 4547 9. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .4547 10. References . . . . . . . . . . . . . . . . . . . . . . . . .4548 10.1. Normative References . . . . . . . . . . . . . . . . . .4548 10.2. Informative References . . . . . . . . . . . . . . . . .4649 Appendix A. Design Justification . . . . . . . . . . . . . . . .4851 Appendix B. Roles and Responsibilities . . . . . . . . . . . . .5055 Appendix C. Requirements on Profiles . . . . . . . . . . . . . .5257 Appendix D. Assumptions on AS knowledge about C and RS . . . . .5358 Appendix E. Deployment Examples . . . . . . . . . . . . . . . .5358 E.1. Local Token Validation . . . . . . . . . . . . . . . . .5358 E.2. Introspection Aided Token Validation . . . . . . . . . .5762 Appendix F. Document Updates . . . . . . . . . . . . . . . . . .6166 F.1. Version -08 to -09 . . . . . . . . . . . . . . . . . . . 66 F.2. Version -07 to -08 . . . . . . . . . . . . . . . . . . . 67 F.3. Version -06 to -07 . . . . . . . . . . . . . . . . . . .61 F.2.67 F.4. Version -05 to -06 . . . . . . . . . . . . . . . . . . .61 F.3.67 F.5. Version -04 to -05 . . . . . . . . . . . . . . . . . . .61 F.4.67 F.6. Version -03 to -04 . . . . . . . . . . . . . . . . . . .62 F.5.67 F.7. Version -02 to -03 . . . . . . . . . . . . . . . . . . .62 F.6.68 F.8. Version -01 to -02 . . . . . . . . . . . . . . . . . . .62 F.7.68 F.9. Version -00 to -01 . . . . . . . . . . . . . . . . . . .6368 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . .6369 1. Introduction Authorization is the process for granting approval to an entity to access a resource [RFC4949]. The authorization task itself can best be described as granting access to a requesting client, for a resource hosted on a device, the resource server (RS). This exchange is mediated by one or multiple authorization servers (AS). Managing authorization for a large number of devices and usersiscan be a complex task. While prior work on authorization solutions for the Web and for the mobile environment also applies to theIoT environmentInternet of Things (IoT) environment, many IoT devices are constrained, forexampleexample, in terms of processing capabilities, available memory, etc. For web applications on constrainednodesnodes, this specificationmakesRECOMMENDS the use of CoAP[RFC7252].[RFC7252] as replacement for HTTP. A detailed treatment of constraints can be found in [RFC7228], and the different IoT deployments present a continuous range of device and network capabilities. Taking energy consumption as an example: At one end there are energy-harvesting or battery powered devices which have a tight power budget, on the other end there are mains- powered devices, and all levels in between. Hence, IoT devices may be very different in terms of available processing and message exchange capabilities and there is a need to support many different authorization use cases [RFC7744]. This specification describes a framework for authentication and authorization in constrained environments (ACE) built on re-use of OAuth 2.0 [RFC6749], thereby extending authorization to Internet of Things devices. This specification contains the necessary building blocks for adjusting OAuth 2.0 to IoT environments. More detailed, interoperable specifications can be found in profiles. Implementations may claim conformance with a specific profile, whereby implementations utilizing the same profile interoperate while implementations of different profiles are not expected to be interoperable. Some devices, such as mobile phones and tablets, may implement multiple profiles and will therefore be able to interact with a wider range of low end devices. Requirements on profiles are described at contextually appropriate placesthrougoutthroughout thismemo,specification, and also summarized in Appendix C. 2. Terminology The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. Certain security-related terms such as "authentication", "authorization", "confidentiality", "(data) integrity", "message authentication code", and "verify" are taken from [RFC4949]. Sincewe describeexchanges in this specification are described as RESTful protocolinteractionsinteractions, HTTP [RFC7231] offers useful terminology. Terminology for entities in the architecture is defined in OAuth 2.0 [RFC6749] and [I-D.ietf-ace-actors], such as client (C), resource server (RS), and authorization server (AS). Note that the term "endpoint" is used here following its OAuth definition, which is to denote resources such as/tokentoken and/introspectintrospection at the AS and/authz-infoauthz-info at theRS.RS (see Section 5.8.1 for a definition of the authz-info endpoint). The CoAP [RFC7252] definition, which is "An entity participating in the CoAP protocol" is not used in thismemo.specification. Since this specification focuses on the problem of access control to resources,we simplifythe actors has been simplified by assuming that the client authorization server (CAS) functionality is not stand-alone but subsumed by either the authorization server or the client (see section 2.2 in [I-D.ietf-ace-actors]).We call theThe specificationsofin thismemodocument is called the "framework" or "ACE framework". When referring to "profiles of this framework"we meanit refers to additionalmemo'sspecifications that define the use of this specification with concrete transport, and communication security protocols(e.g.(e.g., CoAP over DTLS). We use the term "RS Information" for parameters describing characteristics of the RS (e.g. public key) that the AS provides to the client. 3. Overview This specification defines the ACE framework for authorization in the Internet of Things environment. It consists of a set of building blocks. The basic block is the OAuth 2.0 [RFC6749] framework, which enjoys widespread deployment. Many IoT devices can support OAuth 2.0 without any additional extensions, but for certain constrained settings additional profiling is needed. Another building block is the lightweight web transfer protocol CoAP[RFC7252][RFC7252], for those communication environments where HTTP is not appropriate. CoAP typically runs on top ofUDPUDP, which further reduces overhead and message exchanges. While this specification defines extensions for the use of OAuth over CoAP,we do envision furtherother underlying protocolsto beare not prohibited from beeing supported in the future, such as HTTP/2,MQTTMQTT, BLE and QUIC. A third building block is CBOR[RFC7049][RFC7049], for encodings where JSON [RFC7159] is not sufficiently compact. CBOR is a binary encoding designed for small code and message size, which may be used for encoding of self contained tokens, and also for encodingCoAP POST parameters and CoAP responses.payload transferred in protocol messages. A fourth building block is the compact CBOR-based secure message format COSE [RFC8152], which enables application layer security as an alternative or complement to transport layer security (DTLS [RFC6347] or TLS [RFC5246]). COSE is used to secureself containedself-contained tokens such as proof-of-possession (PoP) tokens, which is an extension to the OAuthaccesstokens, and "client tokens" which are defined in this framework (see Section5.6.4).5.7.4). The defaultaccesstoken format is defined in CBOR web token (CWT) [I-D.ietf-ace-cbor-web-token]. Application layer security for CoAP using COSE can be provided with OSCOAP [I-D.ietf-core-object-security]. With the building blocks listed above, solutions satisfying various IoT device and network constraints are possible. A list of constraints is described in detail in RFC 7228 [RFC7228] and a description of how the building blocks mentioned above relate to the various constraints can be found in Appendix A. Luckily, not every IoT device suffers from all constraints. The ACE framework nevertheless takes all these aspects into account and allows several different deployment variants toco-existco-exist, rather than mandating a one-size-fits-all solution.We believe thisIt is important to cover the wide range of possible interworking use cases and the different requirements from a security point of view. Once IoT deployments mature, popular deployment variants will be documented in the form of ACE profiles.In the subsections below we provide further details about the different building blocks.3.1. OAuth 2.0 The OAuth 2.0 authorization framework enables a client to obtainlimitedscoped access to a resource with the permission of a resource owner. Authorization information, or references to it, is passed between the nodes using access tokens. These access tokens are issued to clients by an authorization server with the approval of the resource owner. The client uses the access token to access the protected resources hosted by the resource server. A number of OAuth 2.0 terms are used within this specification: The token andintrospectintrospection Endpoints: The AS hosts the/tokentoken endpoint that allows a client to request access tokens. The client makes a POST request to the/tokentoken endpoint on the AS and receives the access token in the response (if the request was successful).TheIn some deployments, a token introspectionendpoint, /introspect,endpoint is provied by the AS, which can be used by the RSwhen requestingif it needs to request additional information regarding a received access token. The RS makes a POST request to/introspectthe introspecton endpoint on the AS and receives information about the access token in the response. (See "Introspection" below.) Access Tokens: Access tokens are credentials needed to access protected resources. An access token is a data structure representing authorization permissions issued by the AS to the client. Access tokens are generated by theauthorization serverAS and consumed by theresource server.RS. The access token content is opaque to the client. Access tokens can have different formats, and various methods of utilization (e.g., cryptographic properties) based on the security requirements of the given deployment. Proof of Possession Tokens: An access token may be bound to a cryptographic key, which is then used by an RS to authenticate requests from a client. Such tokens are called proof-of-possession access tokens (or PoP access tokens). The proof-of-possession (PoP) security concept assumes that the AS acts as a trusted third party that binds keys to access tokens. These so called PoP keys are then used by the client to demonstrate the possession of the secret to the RS when accessing the resource. The RS, when receiving an access token, needs to verify that the key used by the client matches the one bound to the access token. When this specification uses the term "access token" it is assumed to be a PoP access token token unless specifically stated otherwise. The key bound to the access token(aka(the PoP key) maybe based onuse either symmetricas well as onor asymmetric cryptography. The appropriate choice ofsecuritythe kind of cryptography depends on the constraints of the IoT devices as well as on the security requirements of the use case. Symmetric PoP key: The AS generates a random symmetric PoP key. The key is either stored to be returned on introspection calls or encrypted and included in the access token. The PoP key is also encrypted for the client and sent together with the access token to the client. Asymmetric PoP key: An asymmetric key pair is generated on the client and the public key is sent to the AS (if it does not already have knowledge of the client's public key). Information about the public key, which is the PoP key in this case, is either stored to be returned on introspection calls or included inside the access token and sent back to the requesting client. The RS can identify the client's public key from the information in the token, which allows the client to use the corresponding private key for the proof of possession. The access token is either a simple reference, or a structured information object(e.g.(e.g., CWT [I-D.ietf-ace-cbor-web-token]), protected by a cryptographic wrapper(e.g.(e.g., COSE [RFC8152]). The choice of PoP key does not necessarily imply a specific credential type for the integrity protection of the token. Scopes and Permissions: In OAuth 2.0, the client specifies the type of permissions it is seeking to obtain (via the scope parameter) in the access token request. In turn, the AS may use the scope response parameter to inform the client of the scope of the access token issued. As the client could be a constrained device as well, this specification uses CBORencoded messages for CoAP,encoding as data formt, defined in Section 5, to request scopes and to be informed what scopes the access token actually authorizes. The values of the scope parameter are expressed as a list ofspace- delimited,space-delimited, case-sensitive strings, with a semantic that is well-known to the AS and the RS. More details about the concept of scopes is found under Section 3.3 in [RFC6749]. Claims: Information carried in the access token or returned from introspection, called claims, is in the form oftype-valuename-value pairs. An access token may, for example, include a claim identifying the AS that issued the token (via the "iss" claim) and what audience the access token is intended for (via the "aud" claim). The audience of an access token can be a specific resource or one or many resource servers. The resource owner policies influence what claims are put into the access token by the authorization server. While the structure and encoding of the access token varies throughout deployments, a standardized format has been defined with the JSON Web Token (JWT) [RFC7519] where claims are encoded as a JSON object. In[I-D.ietf-ace-cbor-web-token][I-D.ietf-ace-cbor-web-token], an equivalent format using CBOR encoding (CWT) has been defined. Introspection: Introspection is a method for a resource server to query the authorization server for the active state and content of a received access token. This is particularly useful in those cases where the authorization decisions are very dynamic and/or where the received access token itself isaan opaque reference rather than a self-contained token. More information about introspection in OAuth 2.0 can be found in [RFC7662]. 3.2. CoAP CoAP is an application layer protocol similar to HTTP, but specifically designed for constrained environments. CoAP typically uses datagram-oriented transport, such as UDP, where reordering and loss of packets can occur. A security solutionneedneeds to take the latter aspects into account. While HTTP uses headers andquery-stringsquery strings to convey additional information about a request, CoAP encodes such informationin so-into header parameters called 'options'. CoAP supports application-layer fragmentation of the CoAP payloads through blockwise transfers [RFC7959]. However,block-wiseblockwise transfer does not increase the size limits of CoAP options, therefore data encoded in options has to be kept small. Transport layer security for CoAP can be provided by DTLS 1.2 [RFC6347] or TLS 1.2 [RFC5246]. CoAP defines a number of proxy operationswhich requiresthat require transport layer security to be terminated at the proxy. One approach for protecting CoAP communicationend-to- endend-to-end through proxies, and also to support security for CoAP over a different transport in a uniform way, is to provide securityonat the application layer using an object-based security mechanism such as COSE [RFC8152]. One application of COSE is OSCOAP [I-D.ietf-core-object-security], which provides end-to-end confidentiality, integrity and replay protection, and a secure binding between CoAP request and response messages. In OSCOAP, the CoAP messages are wrapped in COSE objects and sent using CoAP. This framework RECOMMENDS the use of CoAP as replacement for HTTP. 4. Protocol Interactions The ACE framework is based on the OAuth 2.0 protocol interactions using the/tokentoken endpoint and/introspect endpoints.optionally the introspection endpoint. A client obtains an access token from an AS using the/tokentoken endpoint and subsequently presents the access token to a RS to gain access to a protected resource.The RS, after receiving anIn most deployments the RS can process the accesstoken,token locally, however in some cases the RS may present it to the AS via the/introspectintrospection endpoint to getinformation about the access token. In other deployments the RS may process the access token locally without the need to contact an AS.fresh information. These interactions are shown in Figure 1. An overview of various OAuth concepts is provided in Section 3.1. The OAuth 2.0 framework defines a number of "protocol flows" via grant types, which have been extended further with extensions to OAuth 2.0 (such as RFC 7521 [RFC7521] and [I-D.ietf-oauth-device-flow]). What grant types works best depends on the usage scenario and RFC 7744 [RFC7744] describes many different IoT use cases but there are two preferred grant types, namely the Authorization Code Grant (described in Section 4.1 of [RFC7521]) and the Client Credentials Grant (described in Section 4.4 of [RFC7521]). The Authorization Code Grant is a good fit for use with apps running on smart phones and tablets that request access to IoT devices, a common scenario in the smart home environment, where users need to go through an authentication and authorization phase (at least during the initial setup phase). The native apps guidelines described in [I-D.ietf-oauth-native-apps] are applicable to this use case. The Client Credential Grant is a good fit for use with IoT devices where the OAuth client itself is constrained. In such acasecase, the resource owneror another person on his or her behalf have arrangedhas pre-arranged access rights for the client with the authorizationserver out-of-band,server, which is often accomplished using a commissioning tool. The consent of the resource owner, for giving a client access to a protected resource, can be provided dynamically as in the traditional OAuth flows, or it could be pre-configured by the resource owner as authorization policies at the AS, which the AS evaluates when a token request arrives. The resource owner and the requesting party(i.e.(i.e., client owner) are not shown in Figure 1. This framework supports a wide variety of communication security mechanisms between the ACE entities, such as client, AS, and RS.We assumeIt is assumed that the client has been registered (also called enrolled or onboarded) to an AS using a mechanism defined outside the scope of this document. In practice, various techniques for onboarding have been used, such as factory-based provisioning or the use of commissioning tools. Regardless of the onboarding technique, thisregistrationprovisioning procedure implies that the client and the ASshare credentials,exchange credentials and configuration parameters. These credentials are used to mutually authenticate each other and to protect messages exchanged between the client and the AS. It is also assumed that the RS has been registered with the AS, potentially in a similar way as the client has been registered with the AS. Established keying material between the AS and the RS allows the AS to apply cryptographic protection to the access token to ensure that its content cannot be modified, and if needed, that the content is confidentiality protected. The keying material necessary for establishing communication security between C and RS is dynamically established as part of the protocol described in this document. At the start of theprotocolprotocol, there is an optional discovery step where the client discovers the resource server and the resources this server hosts. In thisstepstep, the client might also determine what permissions are needed to access the protected resource.The detailedA generic procedure is described in Section 5.1, profiles MAY define other procedures forthis discovery process may be defined in an ACE profile and depend on the protocols being used and the specific deployment environment.discovery. In Bluetooth Low Energy, for example, advertisements are broadcasted by a peripheral, including information about the primary services. In CoAP, as a second example, a client can make a request to "/.well- known/core" to obtain information about available resources, which are returned in a standardized format as described in [RFC6690]. +--------+ +---------------+ | |---(A)-- Token Request ------->| | | | | Authorization | | |<--(B)-- Access Token ---------| Server | | | + RS Information | | | | +---------------+ | | ^ | | | Introspection Request (D)| | | Client | (optional) | | | | Response + Client Token | |(E) | | (optional) | v | | +--------------+ | |---(C)-- Token + Request ----->| | | | | Resource | | |<--(F)-- Protected Resource ---| Server | | | | | +--------+ +--------------+ Figure 1: Basic Protocol Flow. Requesting an Access Token (A): The client makes an access token request to the/tokentoken endpoint at the AS. This framework assumes the use of PoP access tokens (see Section 3.1 for a short description) wherein the AS binds a key to an access token. The client may include permissions it seeks to obtain, and information about the credentials it wants to use (e.g., symmetric/asymmetric cryptography or a reference to a specific credential). Access Token Response (B): If the AS successfully processes the request from the client, it returns an access token. It can alsoreturns variousreturn additional parameters, referred to as "RS Information". In addition to the response parameters defined by OAuth 2.0 and the PoP access token extension,further response parameters, such as information on which profilethis framework defines parameters that can be used to inform the clientshould use withabout capabilities of theresource server(s).RS. More information about these parameters can be found in Section5.5.4.5.6.4. Resource Request (C): The client interacts with the RS to request access to the protected resource and provides the access token. The protocol to use between the client and the RS is not restricted to CoAP. HTTP, HTTP/2, QUIC, MQTT, Bluetooth Low Energy, etc., are also viable candidates. Depending on the device limitations and the selectedprotocolprotocol, this exchange may be split up into two parts: (1) the client sends the access token containing, or referencing, the authorization information to the RS, that may be used for subsequent resource requests by the client, and (2) the client makes the resource access request, using the communication security protocol and other RS Information obtained from the AS. The Client and the RS mutually authenticate using the security protocol specified in the profile (see step B) and the keys obtained in the access token or the RS Information or the client token. The RS verifies that the token is integrity protected by the AS and compares the claims contained in the access token with the resource request. If the RS is online, validation can be handed over to the AS using token introspection (see messages D and E) over HTTP or CoAP, in which case the different parts of step C may be interleaved with introspection. Token Introspection Request (D): A resource server may be configured to introspect the access token by including it in a request to the/introspectintrospection endpoint at that AS. Token introspection over CoAP is defined in Section5.65.7 and for HTTP in [RFC7662]. Note that token introspection is an optional step and can be omitted if the token is self-contained and the resource server is prepared to perform the token validation on its own. Token Introspection Response (E): The AS validates the token and returns the most recent parameters, such as scope, audience, validity etc. associated with it back to the RS. The RS then uses the received parameters to process the request to either accept or to deny it. The AS can additionally return information that the RS needs to pass on to the client in the form of a client token. The latter is used to establish keys for mutual authentication between client and RS, when the client has no direct connectivity to the AS, see Section5.6.45.7.4 for details. Protected Resource (F): If the request from the client is authorized, the RS fulfills the request and returns a response with the appropriate response code. The RS uses the dynamically established keys to protect the response, according to used communication security protocol. 5. Framework The following sections detail the profiling and extensions of OAuth 2.0 for constrainedenvironmentsenvironments, which constitutes the ACE framework. Credential Provisioning ForIoT weIoT, it cannotgenerally assumebe assumed that the client and RS are part of a common key infrastructure, so the AS provisions credentials or associated information to allow mutual authentication. These credentials need to be provided to the parties before or during the authentication protocol is executed, and may be re-used for subsequent token requests. Proof-of-Possession The ACEframeworkframework, bydefaultdefault, implements proof-of-possession for access tokens,i.e.i.e., that the token holder can prove being a holder of the key bound to the token. The binding is provided by the "cnf" claim [I-D.jones-ace-cwt-proof-of-possession] indicating what key is used for proof-of-possession. Ifclients needa client needs toupdatesubmit atoken, e.g.new access token e.g., togetobtain additional access rights, they can request that the AS bindsthe new accessthis token to the same key as the previoustoken.one. ACE Profiles The client or RS may be limited in the encodings or protocols it supports. To support a variety of different deployment settings, specific interactions between client and RS are defined in an ACE profile. In ACE framework the AS is expected to manage the matching of compatible profile choices between a client and an RS. The AS informs the client of the selected profile using the "profile" parameter in the token response. OAuth 2.0 requires the use of TLS both to protect the communication between AS and client when requesting an access token; between client and RS when accessing a resource and between AS and RSfor introspection.if introspection is used. In constrained settings TLS is not always feasible, or desirable. Nevertheless it is REQUIRED that the data exchanged with the AS is encrypted and integrity protected. It is furthermore REQUIRED that the AS and the endpoint communicating with it (client or RS) perform mutual authentication. Profiles MUST specify how mutual authentication is done, depending e.g. on the communication protocol and the credentials used by the client or the RS. In OAuth 2.0 the communication with the Token and the Introspection endpoints at the AS is assumed to be via HTTP and may use Uri-query parameters. This framework RECOMMENDS to use CoAP instead and RECOMMENDS the use of the following alternative instead of Uri-query parameters: The sender (client or RS) encodes the parameters of its request as a CBOR map and submits that map as the payload of the POST request. The Content-format depends on the security applied to the content and MUST be specified by the profile that is used. The OAuth 2.0 AS uses a JSON structure in the payload of its responses both to client and RS. This frameworkRECOMMENDSREQUIRES the use of CBOR [RFC7049] instead.The requesting device can explicitly request this encoding by setting the CoAP Accept option in the request to "application/cbor".Depending on the profile, thecontentCBOR payload MAYarrivebe enclosed in adifferent format wrapping a CBOR payload.non-CBOR cryptographic wrapper. 5.1. Discovering AuthorizationGrants To requestServers In order to determine the AS in charge of a resource hosted at the RS, C MAY send anaccess token,initial Unauthorized Resource Request message to RS. RS then denies theclient obtains authorization fromrequest and sends theresource owner or usesaddress of itsclient credentials as grant. The authorization is expressed in the formAS back to C. Instead ofan authorization grant. The OAuth framework defines four grant types. The grant types can be splitthe initial Unauthorized Resource Request message, C MAY look upinto two groups, those granted on behalf ofthe desired resourceowner (password,in a resource directory (cf. [I-D.ietf-core-resource-directory]). 5.1.1. Unauthorized Resource Request Message The optional Unauthorized Resource Request message is a request for a resource hosted by RS for which no proper authorizationcode, implicit) and thoseis granted. RS MUST treat any request for a protected resource as Unauthorized Resource Request message when any of theclient (client credentials).following holds: o Thegrant type is selected dependingrequest has been received on an unprotected channel. o RS has no valid access token for theuse case. In cases where the client acts on behalfsender of theresource owner, authorization code grant is recommended. Ifrequest regarding theclient actsrequested action onbehalfthat resource. o RS has a valid access token for the sender of theresource owner,request, but this does nothave any display or very limited interaction possibilities it is recommended to use the device code grant defined in [I-D.ietf-oauth-device-flow]. In cases whereallow theclient does not actrequested action onbehalf oftheresource owner,requested resource. Note: These conditions ensure that RS can handle requests autonomously once access was granted and a secure channel has been established between C and RS. The authz-info endpoint MUST NOT be protected as specified above, in order to allow clients to upload access tokens to RS (cf. Section 5.8.1). Unauthorized Resource Request messages MUST be denied with a clientcredentials grant is recommended. For details onerror response. In this response, thedifferent grant types seeResource Server SHOULD provide proper AS Information to enable theOAuth 2.0 framework. The OAuth 2.0 framework provides an extension mechanism for defining additional grant types so profiles of this framework MAY define additional grant types if needed. 5.2.ClientCredentials Authenticationto request an access token from RS's AS as described in Section 5.1.2. The response code MUST be 4.01 (Unauthorized) in case the sender of theclientUnauthorized Resource Request message ismandatory independent ofnot authenticated, or if RS has no valid access token for C. If RS has an access token for C but not for thegrant type when requestingresource that C has requested, RS MUST reject the request with a 4.03 (Forbidden). If RS has an access tokenfromfor C but it does not cover thetoken endpoint. Inaction C requested on thecase of client credentials grant typeresource, RS MUST reject theauthenticationrequest with a 4.05 (Method Not Allowed). Note: The use of the response codes 4.03 andgrant coincides.4.05 is intended to prevent infinite loops where a dumb Clientregistration and provisioning of client credentialsoptimistically tries to access a requested resource with any access token received from AS. As malicious clients could pretend to be C to determine C's privileges, these detailed response codes must be used only when a certain level of security is already available which can be achieved only when theclientClient isout of scope for this specification.authenticated. 5.1.2. AS Information TheOAuth framework, [RFC6749], defines one client credential type, client id and client secret. Profiles of this framework MAY extend with additional client credentials such as DTLS pre-shared keys or client certificates. 5.3.ASAuthentication Client credential does notInformation is sent bydefault authenticate the AS thatRS as a response to an Unauthorized Resource Request message (see Section 5.1.1) to point theclient connects to. In classic OAuthsender of the Unauthorized Resource Request message to RS's AS. The AS information isauthenticated withaTLS server certificate. Profilesset ofthis framework SHOULD specify how clients authenticateattributes containing an absolute URI (see Section 4.3 of [RFC3986]) that specifies the ASand how communication security is implemented, otherwise server side TLS certificates as defined by OAuth 2.0 is required. 5.4. The 'Authorize' Endpointin charge of RS. Theauthorization endpoint is usedmessage MAY also contain a nonce generated by RS tointeract with the resource owner and obtain an authorization grantensure freshness incertain grant flows. Since it requirescase that theuse of a user agent (i.e. browser), it isRS and AS do notexpectedhave synchronized clocks. Figure 2 summarizes the parameters thatthese typesmay be part ofgrant flow will be used by constrained clients. This endpoint is therefore out of scopethe AS Information. /----------------+----------+-------------------\ | Parameter name | CBOR Key | Major Type | |----------------+----------+-------------------| | AS | 0 | 3 (text string) | | nonce | 5 | 2 (byte string) | \----------------+----------+-------------------/ Figure 2: AS Information parameters Figure 3 shows an example forthis specification. Implementations should usean AS Information message payload using CBOR [RFC7049] diagnostic notation, using thedefinition and recommendationsparameter names instead of[RFC6749] and [RFC6819]. If clients involved cannot support HTTP and TLS profiles MAY define mappings fortheauthorization endpoint. 5.5. The 'Token' EndpointCBOR keys for better human readability. 4.01 Unauthorized Content-Format: application/ace+cbor {AS: "coaps://as.example.com/token", nonce: h'e0a156bb3f'} Figure 3: AS Information payload example Inplain OAuth 2.0this example, the attribute ASprovides the /token endpoint for submitting access token requests. This framework extendspoints thefunctionalityreceiver of this message to the/token endpoint, givingURI "coaps://as.example.com/token" to request access permissions. The originator of the ASthe possibility to help client andInformation payload (i.e., RS) uses a local clock that is loosely synchronized with a time scale common between RSto establish shared keys or to exchange their public keys. Furthermore this framework defines encodings using CoAP and CBOR, in addition to HTTPandJSON. For theASto be able to issue(e.g., wall clock time). Therefore, it has included atoken the client MUSTparameter "nonce" for replay attack prevention. Note: There is an ongoing discussion how freshness of access tokens can beauthenticatedachieved in constrained environments. This specification for now assumes that RS andpresentAS do not have avalid grant for the scopes requested. The figurescommon understanding ofthis section uses CBOR diagnostic notationtime that allows RS to achieve its security objectives withoutthe integer abbreviations for the parameters or their values for better readability. 5.5.1. Client-to-AS Request The client sendsexplicitly adding aCoAP POST request to the token endpoint at the AS, the profile MUST specify the Content-Type and wrapping ofnonce. Figure 4 illustrates thepayload. The contentmandatory to use binary encoding of the message payload shown in Figure 3. a2 # map(2) 00 # unsigned(0) (=AS) 78 1c # text(28) 636f6170733a2f2f61732e657861 6d706c652e636f6d2f746f6b656e # "coaps://as.example.com/token" 05 # unsigned(5) (=nonce) 45 # bytes(5) e0a156bb3f Figure 4: AS Information example encoded in CBOR 5.2. Authorization Grants To requestconsists ofan access token, theparameters specifiedclient obtains authorization from the resource owner or uses its client credentials as grant. The authorization is expressed insection 4 ofthe form of an authorization grant. The OAuth2.0 specification [RFC6749] encoded as a CBOR map. In addition to these parameters, thisframework defines four grant types. The grant types can be split up into two groups, those granted on behalf of thefollowing parameters for requesting an access token from a /token endpoint: aud OPTIONAL. Specifies the audienceresource owner (password, authorization code, implicit) and those forwhichthe client (client credentials). The grant type isrequesting an access token. If this parameter is missing it is assumed thatselected depending on theclient anduse case. In cases where theAS have a pre-established understandingclient acts on behalf of theaudience that an access token should address.resource owner, authorization code grant is recommended. Ifathe clientsubmits a request for an access token without specifying an "aud" parameter, andacts on behalf of theASresource owner, but does not havea default "aud" value for this client, thenany display or very limited interaction possibilities it is recommended to use theAS MUST respond with an error message with the CoAP responsedevice code4.00 (Bad Request). cnf OPTIONAL. This field contains information about the keygrant defined in [I-D.ietf-oauth-device-flow]. In cases where the clientwould like to bind todoes not act on behalf of theaccess token for proof-of- possession. Itresource owner, client credentials grant isRECOMMENDED that an AS reject a request containing a symmetric key value in the 'cnf' field. See Section 5.5.4.5 for morerecommended. For details on theformatting ofdifferent grant types, see the'cnf' parameter.OAuth 2.0 framework [RFC6749]. Thefollowing examples illustrate differentOAuth 2.0 framework provides an extension mechanism for defining additional grant types so profiles ofrequests for proof-of-possession tokens. Figure 2 shows a request for a token with a symmetric proof-of- possession key. Note that inthisexample we assume a DTLS-based communication security profile, thereforeframework MAY define additional grant types, if needed. 5.3. Client Credentials Authentication of theContent-Type is "application/cbor". The contentclient isdisplayed in CBOR diagnostic notation, without abbreviations for better readability. Header: POST (Code=0.02) Uri-Host: "server.example.com" Uri-Path: "token" Content-Type: "application/cbor" Payload: { "grant_type" : "client_credentials", "aud" : "tempSensor4711", } Figure 2: Example request for anmandatory independent of the grant type when requesting the access tokenbound to a symmetric key. Figure 3 shows a request for afrom the tokenwith an asymmetric proof-of- possession key. Note that in this example we assume an object security-based profile, thereforeendpoint. In theContent-Typecase of client credentials grant type, the authentication and grant coincide. Client registration and provisioning of client credentials to the client is"application/ cose". Header: POST (Code=0.02) Uri-Host: "server.example.com" Uri-Path: "token" Content-Type: "application/cose" Payload: "COSE_Encrypted" : { 16( [ h'a1010a', # protected header: {"alg" : "AES-CCM-16-64-128"} {5 : b64'ifUvZaHFgJM7UmGnjA'}, # unprotected header, IV b64'WXThuZo6TMCaZZqi6ef/8WHTjOdGk8kNzaIhIQ' # ciphertext ] ) } Decrypted payload: { "grant_type" : "client_credentials", "cnf" : { "COSE_Key" : { "kty" : "EC", "kid" : h'11', "crv" : "P-256", "x" : b64'usWxHK2PmfnHKwXPS54m0kTcGJ90UiglWiGahtagnv8', "y" : b64'IBOL+C3BttVivg+lSreASjpkttcsz+1rb7btKLv8EX4' } } } Figure 3: Example token request bound to an asymmetric key. Figure 4 shows a request for a token where a previously communicated proof-of-possession key is only referenced. Note that we assume a DTLS-based communication security profileout of scope for thisexample, therefore the Content-Type is "application/cbor". Also note that thespecification. The OAuth framework [RFC6749] defines one clientperforms a password based authentication in this example by submitting its client_secret (see section 2.3.1. of [RFC6749]). Header: POST (Code=0.02) Uri-Host: "server.example.com" Uri-Path: "token" Content-Type: "application/cbor" Payload: { "grant_type" : "client_credentials", "client_id" : "myclient", "client_secret" : "mysecret234", "aud" : "valve424", "scope" : "read", "cnf" : { "kid" : b64'6kg0dXJM13U' } } Figure 4: Example request for an access token bound to acredential type, client id and client secret. [I-D.erdtman-ace-rpcc] adds raw-public- keyreference. 5.5.2. AS-to-Client Response Ifand pre-shared-key to theaccess token request has been successfully verifiedclient credentials types. Profiles of this framework MAY extend with additional client credentials client certificates. 5.4. AS Authentication Client credential does not, by default, authenticate the ASandthat the clientis authorized to obtain an access token corresponding to its access token request,connects to. In classic OAuth, the ASsends a responseis authenticated withthe CoAP response code 2.01 (Created). If client request was invalid, or not authorized,a TLS server certificate. Profiles of this framework MUST specify how clients authenticate the ASreturns an error responseand how communication security is implemented, otherwise server side TLS certificates, asdescribed in Section 5.5.3. Note thatdefined by OAuth 2.0, are required. 5.5. The Authorization Endpoint The authorization endpoint is used to interact with theAS decides which token typeresource owner andprofile toobtain an authorization grant in certain grant flows. Since it requires the usewhen issuingof asuccessful response. Ituser agent (i.e., browser), it isassumednot expected thatthe AS has prior knowledge of the capabilitiesthese types ofthe client, and the RS (see Appendix D. This prior knowledge may, for example,grant flow will besetused bythe use of a dynamic client registration protocol exchange [RFC7591]. The content of the successful replyconstrained clients. This endpoint isthe RS Information. It MUST be encoded as CBOR map, containing parameters as specified in section 5.1therefore out of[RFC6749]. In addition to these parameters,scope for this specification. Implementations should use thefollowing parameters are also partdefinition and recommendations ofa successful response: profile REQUIRED. This indicates[RFC6749] and [RFC6819]. If clients involved cannot support HTTP and TLS, profiles MAY define mappings for theprofile thatauthorization endpoint. 5.6. The Token Endpoint In standard OAuth 2.0, theclient MUST use towardsAS provides theRS. See Section 5.5.4.4token endpoint for submitting access token requests. This framework extends theformattingfunctionality ofthis parameter. cnf REQUIRED ifthe tokentype is 'pop'. OPTIONAL otherwise. If a symmetric proof-of-possession algorithms was selected, this field containsendpoint, giving theproof-of-possession key. If an asymmetric algorithm was selected, this field contains information aboutAS thepublic key used bypossibility to help the client and RS toauthenticate. See Section 5.5.4.5establish shared keys or to exchange their public keys. Furthermore, this framework defines encodings using CBOR, as a substitute for JSON. For theformatting of this parameter. token_type OPTIONAL. By default implementationsAS to be able to issue a token, the client MUST be authenticated and present a valid grant for the scopes requested. Profiles of this frameworkSHOULD assume thatMUST specify how thetoken_typeAS authenticates the client and how the communication between client and AS is'pop'. If a specific use case requires another token_type (e.g. 'Bearer') to be used thenprotected. The figures of thisparameter is REQUIRED. Note that ifsection use CBORWeb Tokens [I-D.ietf-ace-cbor-web-token] are used,diagnostic notation without theaccess token can also contain a 'cnf' claim. This claim is however consumed by a different party. The access token is created byinteger abbreviations for theASparameters or their values for illustrative purposes. Note that implementations MUST use the integer abbreviations andprocessed bytheRS (and opaquebinary CBOR encoding. 5.6.1. Client-to-AS Request The client sends a POST request to theclient) whereastoken endpoint at theRS Information is created byAS. The profile MUST specify theASContent-Type andprocessed bywrapping of theclient; it is never forwarded topayload. The content of theresource server. Figure Figure 5 summarizesrequest consists of the parametersthat may be partspecified in section 4 of theRS Information. /-------------------+--------------------------\ | Parameter name | Specified in | |-------------------+--------------------------| | access_token | RFC 6749 | | token_type | RFC 6749 | | expires_in | RFC 6749 | | refresh_token | RFC 6749 | | scope | RFC 6749 | | state | RFC 6749 | | profile | [[ thisOAuth 2.0 specification]] | | cnf | [[[RFC6749], encoded as a CBOR map. In addition to these parameters, thisspecification ]] | \-------------------+--------------------------/ Figure 5: RS Informationframework defines the following parametersFigure 6 shows a response containing afor requesting an access tokenandfrom a'cnf'token endpoint: aud OPTIONAL. Specifies the audience for which the client is requesting an access token. If this parameterwithis missing, it is assumed that the client and the AS have asymmetric proof-of-possession key. Notepre-established understanding of the audience thatwe assumean access token should address. If aDTLS-based communication security profileclient submits a request forthis example, thereforean access token without specifying an "aud" parameter, and theContent-Type is "application/cbor". Header: Created (Code=2.01) Content-Type: "application/cbor" Payload: { "access_token" : b64'SlAV32hkKG ... (remainderAS does not have an implicit understanding ofCWT omittedthe "aud" value forbrevity; CWT contains COSE_Key inthis client, then the'cnf' claim)', "profile" : "coap_dtls", "expires_in" : "3600", "cnf" : { "COSE_Key" : { "kty" : "Symmetric", "kid" : b64'39Gqlw', "k" : b64'hJtXhkV8FJG+Onbc6mxCcQh' } } } Figure 6: ExampleASresponseMUST respond with anaccess token bound to a symmetric key. 5.5.3. Error Response Theerrorresponses for CoAP-based interactions with the AS aremessage using a response code equivalent to theones for HTTP-based interactions as defined in section 5.2 of [RFC6749], withCoAP response code 4.00 (Bad Request). cnf OPTIONAL. This field contains information about thefollowing differences: o The Content-Type MUST be specified bykey thecommunication security profile used betweenclientand AS. The raw payload before being processed bywould like to bind to thecommunication security protocol MUST be encoded as a CBOR map. o The CoAP response code 4.00 (Bad Request) MUST be used for all error responses, exceptaccess token forinvalid_client whereproof-of- possession. It is RECOMMENDED that an AS reject a request containing a symmetric key value in theCoAP response code 4.01 (Unauthorized) MAY'cnf' field, since the AS is expected to beused underable to generate better symmetric keys than a potentially constrained client. See Section 5.6.4.5 for more details on thesame conditions as specified in section 5.2formatting of[RFC6749]. o The parameters "error", "error_description" and "error_uri" MAY be abbreviated usingthecodes specified in table Figure 13. o'cnf' parameter. Theerror codes MAY be abbreviated using the codes specified in tablefollowing examples illustrate different types of requests for proof-of-possession tokens. Figure7. /------------------------+----------+--------------\ | error code | CBOR Key | Major Type | |------------------------+----------+--------------| | invalid_request | 0 | 0 (uint) | | invalid_client | 1 | 0 | | invalid_grant | 2 | 0 | | unauthorized_client | 3 | 0 | | unsupported_grant_type | 4 | 0 | | invalid_scope |5| 0 | | unsupported_pop_key | 6 | 0 | \------------------------+----------+--------------/ Figure 7: CBOR abbreviationsshows a request forcommon error codes In addition to the error responses defined in OAuth 2.0, the follwoing behaviour MUST be implemented by the AS: If the client submits an asymmetric key in thea tokenrequest that the RS cannot process, the AS MUST reject that request with the CoAP response code 4.00 (Bad Request)withthe error code "unsupported_pop_key" defined in figure Figure 7. 5.5.4. Request and Response Parameters This section provides more detail about the new parametersa symmetric proof-of- possession key. Note thatcan be usedinaccess token requests and responses, as well as abbreviations for more compact encoding of existing parameters and common parameter values. 5.5.4.1. Audience This parameter specifies for which audiencethis example it is assumed that transport layer communication security is used, therefore theclientContent-Type isrequesting a token. It should be encoded as CBOR text string (major type 3). The formatting and semantics of these strings are application specific. 5.5.4.2. Grant Type"application/cbor". Theabbreviations in Figure 8 MAY be used in CBOR encodings instead of the string values definedcontent is displayed in[RFC6749]. /--------------------+----------+--------------\ | grant_type | CBOR Key | Major Type | |--------------------+----------+--------------| | password | 0 | 0 (uint) | | authorization_code | 1 | 0 | | client_credentials | 2 | 0 | | refresh_token | 3 | 0 | \--------------------+----------+--------------/ Figure 8:CBOR diagnostic notation, without abbreviations forcommon grant types 5.5.4.3. Token Type The token_type parameter is defined in [RFC6749], allowing the AS to indicate to the client which type ofbetter readability. Header: POST (Code=0.02) Uri-Host: "server.example.com" Uri-Path: "token" Content-Type: "application/cbor" Payload: { "grant_type" : "client_credentials", "client_id" : "myclient", "aud" : "tempSensor4711" } Figure 5: Example request for an access tokenit is receiving (e.g.bound to abearer token). This document registers the new value "pop"symmetric key. Figure 6 shows a request forthe OAuth Access Token Types registry, specifyingaProof-of-Possession token. How the proof-of-possession is performed MUST be specified by the profiles. The values in the 'token_type' parameter MUST be CBOR text strings (major type 3). In this frameworktokentype 'pop' MUST be assumed by default if the AS does not provide a different value. 5.5.4.4. Profile Profiles of this framework MUST define the communication protocol and the communication security protocol between the client and the RS. Furthermore profiles MUST define proof-of-possession methods, if they support proof-of-possession tokens. A profile MUST specifywith anidentifierasymmetric proof-of- possession key. Note that in this example COSE is used touniquely identify itself in the 'profile' parameter. Profiles MAY define additional parameters for bothprovide object-security, therefore the Content-Type is "application/cose". Header: POST (Code=0.02) Uri-Host: "server.example.com" Uri-Path: "token" Content-Type: "application/cose" Payload: "COSE_Encrypted" : { 16( [ h'a1010a', # protected header: {"alg" : "AES-CCM-16-64-128"} {5 : b64'ifUvZaHFgJM7UmGnjA'}, # unprotected header, IV b64'WXThuZo6TMCaZZqi6ef/8WHTjOdGk8kNzaIhIQ' # ciphertext ] ) } Decrypted payload: { "grant_type" : "client_credentials", "client_id" : "myclient", "cnf" : { "COSE_Key" : { "kty" : "EC", "kid" : h'11', "crv" : "P-256", "x" : b64'usWxHK2PmfnHKwXPS54m0kTcGJ90UiglWiGahtagnv8', "y" : b64'IBOL+C3BttVivg+lSreASjpkttcsz+1rb7btKLv8EX4' } } } Figure 6: Example token requestand the RS Information in the access token response in orderbound tosupport negotiation or signalling of profile specific parameters. 5.5.4.5. Confirmation The "cnf" parameter identifies or provides the key used for proof-of- possession oran asymmetric key. Figure 7 shows a request forauthenticating the RS depending on the proof-of- possession algorithm anda token where a previously communicated proof-of-possession key is only referenced. Note that a transport layer based communication security profile is assumed in this example, therefore thecontext cnfContent-Type isused in. This framework extends"application/cbor". Also note that thedefinition of 'cnf' from [RFC7800]client performs a password based authentication in this example byadding CBOR/COSE encodings and the usesubmitting its client_secret (see section 2.3.1. of'cnf' for transporting keys in the RS Information. The[RFC6749]). Header: POST (Code=0.02) Uri-Host: "server.example.com" Uri-Path: "token" Content-Type: "application/cbor" Payload: { "grant_type" : "client_credentials", "client_id" : "myclient", "client_secret" : "mysecret234", "aud" : "valve424", "scope" : "read", "cnf"parameter is used in the following contexts with the following meaning: o In the: { "kid" : b64'6kg0dXJM13U' } } Figure 7: Example request for an accesstoken, to indicate the proof-of-possession keytoken bound tothis token. o Ina key reference. 5.6.2. AS-to-Client Response If the access token requestC -> AS, to indicate the client's raw public key, orhas been successfully verified by thekey-identifier of a previously established key between CAS andRS. o Inthe client is authorized to obtain an access tokenresponse AS -> C,corresponding toindicate either the symmetric key generated byits access token request, the ASfor proof-of-possession or the raw public key used bysends a response with theRSresponse code equivalent toauthenticate. o IntheintrospectionCoAP response code 2.01 (Created). If client request was invalid, or not authorized, the AS-> RS, to indicatereturns an error response as described in Section 5.6.3. Note that theproof-of- possession key boundAS decides which token type and profile to use when issuing a successful response. It is assumed that theintrospected token. o InAS has prior knowledge of the capabilities of the clienttoken AS ->and the RS-> C, to indicate(see Appendix D. This prior knowledge may, for example, be set by theproof-of- possession key bound to the access token. A CBOR encoded payload MAY contain the 'cnf' parameter with the following contents: COSE_Key In this caseuse of a dynamic client registration protocol exchange [RFC7591]. The content of the'cnf' parameter containssuccessful reply is theproof-of- possession key toRS Information. It MUST beused by the client. An example is shown in Figure 9. "cnf" : { "COSE_Key" : { "kty" : "EC", "kid" : h'11', "crv" : "P-256", "x" : b64'usWxHK2PmfnHKwXPS54m0kTcGJ90UiglWiGahtagnv8', "y" : b64'IBOL+C3BttVivg+lSreASjpkttcsz+1rb7btKLv8EX4' } } Figure 9: Confirmation parameterencoded as CBOR map, containinga public key Note thatparameters as specified in section 5.1 of [RFC6749]. In addition to these parameters, theCOSE_Key structure may contain an "alg" or "key_ops" parameter. If suchfollowing parameters arepresent,also part of a successful response: profile OPTIONAL. This indicates the profile that the client MUSTNOTusea key thattowards the RS. See Section 5.6.4.4 for the formatting of this parameter. . If this parameter isnot compatible withabsent, the AS assumes that the client implicitly knows which profileor proof-of- possession algorithm accordingtothose parameters. COSE_Encrypted In this caseuse towards the'cnf' parameterRS. cnf REQUIRED if the token type is "pop" and a symmetric key is used. MUST NOT be present otherwise. This field containsan encryptedthe symmetric proof-of-possession keydestined fortheclient. Theclient isassumed to be ablesupposed todecryptuse. See Section 5.6.4.5 for details on theciphertextuse of this parameter.The parameter is encoded as COSE_Encrypted object wrapping a COSE_Key object. Figure 10 shows an example of thisrs_cnf OPTIONAL if the token typeof encoding. "cnf" : { "COSE_Encrypted" : { 993( [ h'a1010a' # protected header : {"alg" : "AES-CCM-16-64-128"} "iv" : b64'ifUvZaHFgJM7UmGnjA', # unprotected header b64'WXThuZo6TMCaZZqi6ef/8WHTjOdGk8kNzaIhIQ' # ciphertext ] ) } } Figure 10: Confirmation parameter containing an encrypted symmetric key The ciphertext here could e.g. contain a symmetricis "pop" and asymmetric keys are used. MUST NOT be present otherwise. This field contains information about the public keyas in Figure 11. { "kty" : "Symmetric", "kid" : b64'39Gqlw', "k" : b64'hJtXhkV8FJG+Onbc6mxCcQh' } Figure 11: Example plaintextused by the RS to authenticate. See Section 5.6.4.5 for details on the use ofan encrypted cnf parameter Key Identifier Inthiscase the 'cnf'parameter. If this parameterreferences a key thatisassumed to be previously known byabsent, therecipient. This allows clientsAS assumes thatperform repeated requests for an access token forthesame audience but e.g. with different scopes to omit key transport inclient already knows theaccess token, token request and token response. Figure 12 shows such an example. "cnf" : { "kid" : b64'39Gqlw' } Figure 12: A Confirmation parameter with just apublic keyidentifier This specification establishes the IANA "CWT Confirmation Methods" registry for these typesofconfirmation methods in Section 8.10 and registersthemethods defined byRS. token_type OPTIONAL. By default implementations of thisspecification. Other specifications can register other methods used for confirmation. The registryframework SHOULD assume that the token_type ismeant"pop". If a specific use case requires another token_type (e.g., "Bearer") to beanalogous toused then this parameter is REQUIRED. Note that if CBOR Web Tokens [I-D.ietf-ace-cbor-web-token] are used, the"JWT Confirmation Methods" registry definedaccess token can also contain a "cnf" claim [I-D.jones-ace-cwt-proof-of-possession]. This claim is however consumed by[RFC7800]. 5.5.5. Mapping parameters to CBOR All OAuth parameters ina different party. The access tokenrequests and responses are mappedis created by the AS and processed by the RS (and opaque toCBOR types as followsthe client) whereas the RS Information is created by the AS andare given an integer key valueprocessed by the client; it is never forwarded tosave space. /-------------------+----------+-----------------\the resource server. Figure 8 summarizes the parameters that may be part of the RS Information. /-------------------+--------------------------\ | Parameter name |CBOR Key | Major Type | |-------------------+----------+-----------------| | aud | 3 | 3 | | client_id | 8 | 3 (text string)Specified in | |-------------------+--------------------------| |client_secretaccess_token |9RFC 6749 |2 (byte string)| token_type |response_typeRFC 6749 |10|3expires_in | RFC 6749 |redirect_uri|11refresh_token |3RFC 6749 | | scope |12 | 3RFC 6749 | | state |13 | 3 | | code | 14 | 2RFC 6749 | | error |15 | 3RFC 6749 | | error_description |16 | 3RFC 6749 | | error_uri |17 | 3 | | grant_type | 18 | 0 | | access_token | 19 | 3 | | token_type | 20 | 0 | | expires_in | 21 | 0 | | username | 22 | 3 | | password | 23 | 3 |RFC 6749 |refresh_token|24profile |3[[ this specification ]] | | cnf |25 | 5 (map) |[[ this specification ]] |profile|26rs_cnf |3[[ this specification ]] |\-------------------+----------+-----------------/\-------------------+--------------------------/ Figure13: CBOR mappings used in token requests 5.6. The 'Introspect' Endpoint Token introspection [RFC7662] is used by the8: RSand potentially the client to query the AS for metadata aboutInformation parameters Figure 9 shows a response containing agiventokene.g. validity or scope. Analogous to the protocol defined in RFC 7662 [RFC7662] for HTTP and JSON, this section defines adaptations to more constrained environments using CoAP and CBOR. Communication between the RS and the introspection endpoint at the AS MUST be integrity protected and encrypted. Furthermore ASandRS MUST perform mutual authentication. Finally the AS SHOULD verify that the RS has the right to access introspection information about the provided token. Profiles of this frameworka "cnf" parameter with a symmetric proof-of-possession key. Note thatsupport introspection MUST specify how authentication and communicationtransport layer securitybetween RS and ASisimplemented. The figures ofassumed in thissection uses CBOR diagnostic notation withoutexample, therefore theinteger abbreviationsContent-Type is "application/cbor". Header: Created (Code=2.01) Content-Type: "application/cbor" Payload: { "access_token" : b64'SlAV32hkKG ... (remainder of CWT omitted for brevity; CWT contains COSE_Key in theparameters or their values for better readability. 5.6.1. RS-to-AS Request The RS sends a CoAP POST request"cnf" claim)', "profile" : "coap_dtls", "expires_in" : "3600", "cnf" : { "COSE_Key" : { "kty" : "Symmetric", "kid" : b64'39Gqlw', "k" : b64'hJtXhkV8FJG+Onbc6mxCcQh' } } } Figure 9: Example AS response with an access token bound to a symmetric key. 5.6.3. Error Response The error responses for CoAP-based interactions with theintrospection endpoint atAS are equivalent to theAS,ones for HTTP-based interactions as defined in section 5.2 of [RFC6749], with theprofilefollowing differences: o The Content-Type MUSTspecifybe specified by theContent-Typecommunication security profile used between client andwrapping of the payload.AS. The raw payload before being processed by the communication security protocol MUST be encoded as a CBORmap with a 'token' parameter containing the access token along with optional parameters representing additional context that is known bymap. o A response code equivalent to theRSCoAP code 4.00 (Bad Request) MUST be used for all error responses, except for invalid_client where a response code equivalent toaidtheAS in its response. TheCoAP code 4.01 (Unauthorized) MAY be used under the sameparameters are required and optionalconditions as specified in section2.15.2 ofRFC 7662 [RFC7662]. For example, Figure 14 shows a RS calling[RFC6749]. o The parameters "error", "error_description" and "error_uri" MUST be abbreviated using thetoken introspection endpoint atcodes specified in Figure 12. o The error code (i.e., value of theAS"error" parameter) MUST be abbreviated as specified in Figure 10. /------------------------+-------------------\ | error code | CBOR Value (uint) | |------------------------+-------------------| | invalid_request | 0 | | invalid_client | 1 | | invalid_grant | 2 | | unauthorized_client | 3 | | unsupported_grant_type | 4 | | invalid_scope | 5 | | unsupported_pop_key | 6 | \------------------------+-------------------/ Figure 10: CBOR abbreviations for common error codes In addition toquery about anthe error responses defined in OAuth2.0 proof-of-possession token. Note that we assume a object security-based communication security profile for this example, therefore2.0, theContent-Type is "application/cose+cbor". Header: POST (Code=0.02) Uri-Host: "server.example.com" Uri-Path: "introspect" Content-Type: "application/cose+cbor" Payload: { "token" : b64'7gj0dXJQ43U', "token_type_hint" : "pop" } Figure 14: Example introspection request. 5.6.2. AS-to-RS Responsefollowing behavior MUST be implemented by the AS: If theintrospectionclient submits an asymmetric key in the token requestis authorized and successfully processed,that the RS cannot process, the ASsendsMUST reject that request with a responsewithcode equivalent to the CoAPresponsecode2.01 (Created). If the introspection request was invalid, not authorized or couldn't be processed4.00 (Bad Request) including theAS returns anerrorresponse as described in Section 5.6.3. In a successful response, the AS encodes the response parameterscode "unsupported_pop_key" defined ina CBOR map including with the same requiredFigure 10. 5.6.4. Request andoptional parameters as in section 2.2. of RFC 7662 [RFC7662] with the following additions: cnf OPTIONAL.Response Parameters Thisfield contains informationsection provides more detail about theproof-of- possession keynew parameters thatbinds the client to thecan be used in accesstoken. See Section 5.5.4.5token requests and responses, as well as abbreviations for moredetails on the formattingcompact encoding ofthe 'cnf' parameter. profile OPTIONAL.existing parameters and common parameter values. 5.6.4.1. Audience Thisindicates the profile that the RS MUST use with the client. See Section 5.5.4.4parameter specifies formore details onwhich audience the client is requesting a token. It should be encoded as CBOR text string (major type 3). The formatting and semantics ofthis parameter. client_token OPTIONAL. This parameter contains information that the RSthese strings are application specific. 5.6.4.2. Grant Type The abbreviations in Figure 11 MUSTpass on tobe used in CBOR encodings instead of theclient. See Section 5.6.4 for more details. For example,string values defined in [RFC6749]. /--------------------+-------------------\ | grant_type | CBOR Value (uint) | |--------------------+-------------------| | password | 0 | | authorization_code | 1 | | client_credentials | 2 | | refresh_token | 3 | \--------------------+-------------------/ Figure15 shows an11: CBOR abbreviations for common grant types 5.6.4.3. Token Type The token_type parameter is defined in [RFC6749], allowing the ASresponseto indicate to theintrospection request in Figure 14. Note that we assume a DTLS-based communication security profile for this example, therefore the Content-Type is "application/cbor". Header: Created Code=2.01) Content-Type: "application/cbor" Payload: { "active" : true, "scope" : "read", "profile" : "coap_dtls", "client_token" : b64'2QPhg0OhAQo ... (remainder ofclient which type of access tokenomitted for brevity)', "cnf" : { "COSE_Key" : { "kty" : "Symmetric", "kid" : b64'39Gqlw', "k" : b64'hJtXhkV8FJG+Onbc6mxCcQh' } } } Figure 15: Example introspection response. 5.6.3. Error Response The error responses for CoAP-based interactions with the AS are equivalent toit is receiving (e.g., a bearer token). This document registers theonesnew value "pop" forHTTP-based interactions as defined in section 2.3 of [RFC7662], withthefollowing differences: o If content is sent,OAuth Access Token Types registry, specifying a Proof-of-Possession token. How theContent-Typeproof-of-possession is performed MUST beset according to the specification ofspecified by thecommunication security profile, andprofiles. The values in thecontent payload"token_type" parameter MUST beencoded as aCBORmap. o If the credentials usedtext strings (major type 3). In this framework token type "pop" MUST be assumed bythe RS are invaliddefault if the ASMUST respond with the CoAP response code 4.01 (Unauthorized) and use the required and optional parameters from section 5.2 in RFC 6749 [RFC6749]. o If the RSdoes nothave the right to performprovide a different value. 5.6.4.4. Profile Profiles of thisintrospection request, the ASframework MUSTrespond withdefine theCoAP response code 4.03 (Forbidden). In this case no payload is returned. o The parameters "error", "error_description"communication protocol and"error_uri" MAY be abbreviated usingthecodes specified in table Figure 13. o The error codes MAY be abbreviated usingcommunication security protocol between thecodes specified in table Figure 7. Note that a properly formedclient andauthorized query for an inactive or otherwise invalid token does not warrant an error response by this specification. In these cases,theauthorization serverRS. The security protocol MUSTinstead respond with an introspection response with the "active" field set to "false". 5.6.4. Client Token EDITORIAL NOTE: We have tentatively introduced this conceptprovide encryption, integrity andwould specifically like feedback whether this is viewed as a useful additionreplay protection. Furthermore profiles MUST define proof-of-possession methods, if they support proof-of-possession tokens. A profile MUST specify an identifier that can be used to uniquely identify itself in theframework. In cases where the client has limited connectivity and needs to get access to a previously unknown resource servers, this framework suggests"profile" parameter. Profiles MAY define additional parameters for both thefollowing approach: The client is pre-configured with a generic, long-term accesstokenwhen it is commissioned. Whenrequest and theclient then tries to access aRSit transmits thisInformation in the accesstoken. The RS then performstokenintrospectionresponse in order tolearn what access this token grants. In the introspection response,support negotiation or signaling of profile specific parameters. 5.6.4.5. Confirmation The "cnf" parameter identifies or provides theAS also relays informationkey used for proof-of- possession, while theclient, such as"rs_cnf" parameter provides theproof-of-possession key, throughraw public key of the RS.The RS passes on this Client Token toBoth parameters use theclientsame formatting and semantics as the "cnf" claim specified inresponse[I-D.jones-ace-cwt-proof-of-possession]. In addition to thesubmission ofuse as a claim in a CWT, thetoken. The client_token"cnf" parameter isdesignedused in the following contexts with the following meaning: o In the token request C -> AS, tocarry such information,indicate the client's raw public key, or the key-identifier of a previously established key between C and RS. o In the token response AS -> C, to indicate the symmetric key generated by the AS for proof-of-possession. o In the introspection response AS -> RS, to indicate the proof-of- possession key bound to the introspected token. o In the client token AS -> RS -> C, to indicate the proof-of- possession key bound to the access token. Note that the COSE_Key structure in a "cnf" claim or parameter may contain an "alg" or "key_ops" parameter. If such parameters are present, a client MUST NOT use a key that isintendednot compatible with the profile or proof-of-possession algorithm according to those parameters. An RS MUST reject a proof-of-possession using such a key. 5.6.5. Mapping parameters to CBOR All OAuth parameters in access token requests and responses MUST beusedmapped to CBOR types asdescribedspecified in Figure16. Resource Authorization Client Server Server12, using the given integer abbreviation for the key. Note that we have aligned these abbreviations with the claim abbreviations defined in [I-D.ietf-ace-cbor-web-token]. /-------------------+----------+------------------\ | Parameter name | CBOR Key | Type | |-------------------+----------+------------------| | aud |C: +--------------->|3 | text string |POST| client_id | 8 |Access Tokentext string | | client_secret |D: +--------------->|9 | byte string |Introspection| response_type | 10 |Requesttext string | | redirect_uri | 11 | text string |E: +<---------------+| scope |Introspection12 | text string | |Responsestate | 13 | text string |+ Client Token||<---------------+code | 14 |2.01 Createdbyte string | | error |+ Client Token15 |Figure 16: Use of the client_token parameter. The client token is a COSE_Encrypted object, containing as payload a CBOR map with the following claims: cnf REQUIRED if the token type is 'pop', OPTIONAL otherwise. Contains information about the proof-of-possession key the client is to use with its access token. See Section 5.5.4.5. token_type OPTIONAL. See Section 5.5.4.3. profile REQUIRED. See Section 5.5.4.4. rs_cnf OPTIONAL. Contains information about the key that the RS uses to authenticate towards the client. If the key is symmetric then this claim MUST NOT be part of the Client Token, since this is the same key as the one specified through the 'cnf' claim. This claim uses the same encoding as the 'cnf' parameter. See Section 5.5.4.4. The AS encrypts this token using a key shared between the AS and the client, so that only the client can decrypt it and access its payload. How this key is established is out of scope of this framework, however it can be established at the same time at which the client's long term token is created. 5.6.5. Mapping Introspection parameters to CBOR The introspection request and response parameters are mapped to CBOR types as follows and are given an integer key value to save space. /-----------------+----------+-----------------\text string |Parameter name|CBOR Keyerror_description |Major Type16 ||-----------------+----------+-----------------|text string |iss|1error_uri |3 (text string)17 | text string |sub|2grant_type |318 | unsigned integer |aud|3access_token |319 | text string |exp|4token_type |6 tag value 120 | unsigned integer |nbf|5expires_in |6 tag value 121 | unsigned integer |iat|6 | 6 tag value 1 | | cti | 7 | 2 (byte string) | | client_id | 8 | 3 | | scopeusername |1222 |3text string | |token_typepassword |2023 |3text string | |usernamerefresh_token |2224 |3text string | | cnf | 25 |5 (map)map | | profile | 26 |0 (uint) | | token | 27 | 3 | | token_type_hint | 28 | 3 | | active | 29 | 0 | | client_token | 30 | 3text string | | rs_cnf | 31 |5map |\-----------------+----------+-----------------/\-------------------+----------+------------------/ Figure17:12: CBORMappings to Token Introspection Parameters.mappings used in token requests 5.7. TheAccess'Introspect' Endpoint TokenThis framework RECOMMENDSintrospection [RFC7662] can be OPTIONALLY provided by theuse of CBOR web token (CWT) as specified in [I-D.ietf-ace-cbor-web-token]. In order to facilitate offline processing of access tokens, this draft specifiesAS, and is then used by the"cnf"RS and"scope" claims for CBOR web tokens. The "scope" claim explicitly encodespotentially thescope ofclient to query the AS for metadata about a givenaccess token. This claim followstoken e.g., validity or scope. Analogous to thesame encoding rules asprotocol defined in RFC 7662 [RFC7662] for HTTP and JSON, this section3.3 of [RFC6749]. The meaningdefines adaptations to more constrained environments using CBOR and leaving the choice ofa specific scope value isthe applicationspecific and expected to be knownprotocol to theRS running that application. The "cnf" claim followsprofile. Communication between thesame rules as specified for JOSE web token in RFC7800 [RFC7800], except that it is encoded in COSE inRS and thesame way as specified forintrospection endpoint at the"cnf" parameter in Section 5.5.4.5. 5.7.1. The 'Authorization Information' Endpoint The access token, containing authorization information and information about the key used by the client, needs toAS MUST betransported to theintegrity protected and encrypted. Furthermore AS and RSsoMUST perform mutual authentication. Finally the AS SHOULD verify that the RScan authenticate and authorize the client request. This section defines a method for transportinghas theaccess tokenright to access introspection information about theRS using CoAP.provided token. Profiles of this frameworkMAY define other methods for token transport.that support introspection MUST specify how authentication and communication security between RS and AS is implemented. Themethod consistsfigures ofan /authz-info endpoint, implemented bythis section uses CBOR diagnostic notation without theRS. A client usinginteger abbreviations for the parameters or their values for better readability. Note that supporting introspection is OPTIONAL for implementations of thismethod MUST makeframework. 5.7.1. RS-to-AS Request The RS sends a POST request to/authz- infothe introspection endpoint at theRS withAS, theaccess token inprofile MUST specify the Content-Type and wrapping of the payload. TheRS receiving the tokenpayload MUSTverify the validity ofbe encoded as a CBOR map with a "token" parameter containing either thetoken. Ifaccess token or a reference to the token (e.g., the cti). Further optional parameters representing additional context that isvalid,known by the RSMUST respondto aid thePOST request with 2.01 (Created). ThisAS in its response MAYcontain the identifier of the token (e.g. the cti for a CWT)be included. The same parameters are required and optional as in section 2.1 of RFC 7662 [RFC7662]. For example, Figure 13 shows apayload. IfRS calling the tokenis not valid,introspection endpoint at theRS MUST respond withAS to query about an OAuth 2.0 proof-of-possession token. Note that object security based on COSE is assumed in this example, therefore theCoAP response code 4.01 (Unauthorized).Content-Type is "application/cose+cbor". Header: POST (Code=0.02) Uri-Host: "server.example.com" Uri-Path: "introspect" Content-Type: "application/cose+cbor" Payload: { "token" : b64'7gj0dXJQ43U', "token_type_hint" : "pop" } Figure 13: Example introspection request. 5.7.2. AS-to-RS Response If thetokenintrospection request isvalid but the audience of the token does not match the RS,authorized and successfully processed, theRS MUST respondAS sends a response with theCoAPresponse code4.03 (Forbidden). If the token is valid but is associatedequivalent toclaims that the RS cannot process (e.g. an unknown scope) the RS MUST respond withthe CoAPresponsecode4.00 (Bad Request). In the latter case the RS MAY provide additional information in2.01 (Created). If theerror response, in order to clarify what went wrong. The RS MAY make anintrospection requestto validatewas invalid, not authorized or couldn't be processed thetoken before responding toAS returns an error response as described in Section 5.7.3. In a successful response, thePOST /authz-info request. IfAS encodes theintrospectionresponsecontains a client token (Section 5.6.4) then this token SHALL be includedparameters in a CBOR map including with thepayloadsame required and optional parameters as in section 2.2. of RFC 7662 [RFC7662] with the2.01 (Created) response. Profiles MUST specify how the /authz-info endpoint is protected. Note that since the tokenfollowing additions: cnf OPTIONAL. This field contains information about the proof-of- possession key thatallowbinds the clientand the RStoestablish a security context inthefirst place, mutual authentication may not be possible at this point. The RS MUST be prepared to store more than one tokenaccess token. See Section 5.6.4.5 foreach client, and MUST apply the combined permissions granted by all applicable, valid tokens to client requests. 5.7.2. Token Expiration Dependingmore details on thecapabilities of the RS, there are various ways in which it can verify the validityuse ofa received access token. We listthepossibilities here including what functionality they require of"cnf" parameter. profile OPTIONAL. This indicates theRS. o The token is a CWT/JWT and includes a 'exp' claim and possiblyprofile that the'nbf' claim. TheRSverifies these by comparing them to values from its internal clock as defined in [RFC7519]. In this case the RS's internal clock must reflect the current date and time, or at least be synchronizedMUST use with theAS's clock. How this clock synchronization would be performed is out of scopeclient. See Section 5.6.4.4 forthis memo. o The RS verifiesmore details on thevalidityformatting ofthe token by performing an introspection request as specified in Section 5.6.this parameter. client_token OPTIONAL. Thisrequiresparameter contains information that the RSto have a reliable network connectionMUST pass on to the client. See Section 5.7.4 for more details. For example, Figure 14 shows an ASand to be able to handle two secure sessions in parallel (C to RS and ASresponse toRS). o The RS andtheAS both store a sequence number linked to their commonintrospection request in Figure 13. Note that transport layer securityassociation. The AS increments this number for each access token it issues and includes itis assumed in this example, therefore theaccess token, whichContent-Type isa CWT. The RS keeps track"application/cbor". Header: Created Code=2.01) Content-Type: "application/cbor" Payload: { "active" : true, "scope" : "read", "profile" : "coap_dtls", "client_token" : b64'2QPhg0OhAQo ... (remainder of client token omitted for brevity)', "cnf" : { "COSE_Key" : { "kty" : "Symmetric", "kid" : b64'39Gqlw', "k" : b64'hJtXhkV8FJG+Onbc6mxCcQh' } } } Figure 14: Example introspection response. 5.7.3. Error Response The error responses for CoAP-based interactions with themost recently received sequence number, and only accepts tokens as valid, thatAS arein a certain range around this number. This method does only require the RSequivalent tokeep trackthe ones for HTTP-based interactions as defined in section 2.3 of [RFC7662], with thesequence number. The method does not provide timely expiration, but it makes sure that older tokens cease tofollowing differences: o If content is sent, the Content-Type MUST bevalid after a certain numberset according to the specification ofnewer ones got issued. For a constrained RS with no network connectivitythe communication security profile, andno means of reliably measuring time, this isthebest that cancontent payload MUST beachieved. If a token, that authorizes a long running request suchencoded ase.g.aCoAP Observe [RFC7641], expires,CBOR map. o If the credentials used by the RS are invalid the AS MUSTsend an error responserespond with the response code4.01 Unauthorizedequivalent to theclientCoAP code 4.01 (Unauthorized) andthen terminate processinguse thelong running request. 6. Security Considerations Security considerations applicable to authenticationrequired andauthorization in RESTful environments providedoptional parameters from section 5.2 inOAuth 2.0 [RFC6749] apply to this work, as well asRFC 6749 [RFC6749]. o If thesecurity considerations from [I-D.ietf-ace-actors]. Furthermore [RFC6819] provides additional security considerations for OAuth which apply to IoT deployments as well. A large range of threats can be mitigated by protecting the contents of the access token by using a digital signature or a keyed message digest (MAC) or an AEAD algorithm. Consequently,RS does not have thetoken integrity protection MUST be appliedright topreventperform this introspection request, thetoken from being modified, particularly since it containsAS MUST respond with areferenceresponse code equivalent to thesymmetric key or the asymmetric key. If the access token contains the symmetric key,CoAP code 4.03 (Forbidden). In thissymmetric keycase no payload is returned. o The parameters "error", "error_description" and "error_uri" MUST beencrypted byabbreviated using theauthorization server so that onlycodes specified in Figure 12. o The error codes MUST be abbreviated using theresource server can decrypt it.codes specified in Figure 10. Note thatusing an AEAD algorithm is preferrable over usingaMAC unless the message needs to be publicly readable. It is importantproperly formed and authorized query for an inactive or otherwise invalid token does not warrant an error response by this specification. In these cases, the authorization serverto includeMUST instead respond with an introspection response with theidentity of"active" field set to "false". 5.7.4. Client Token In cases where theintended recipient (the audience), typically a single resource server (orclient has limited connectivity and needs to get access to alist ofpreviously unknown resourceservers), inservers, this framework suggests thetoken. Using a single shared secretfollowing OPTIONAL approach: The client is pre- configured withmultiple resource servers to simplify key managementa long-term access token, which isNOT RECOMMENDED since the benefit from using the proof- of-possession conceptnot self-contained (i.e. it issignificantly reduced. The authorization server MUST offer confidentiality protection for any interactions withonly a reference to a token at theclient. This stepAS) when it isextremely important sincecommissioned. When the clientmay obtion the proof-of-possession key from the authorization server for use withthen tries to access aspecificRS it transmits this access token.Not using confidentiality protection exposesThe RS then performs token introspection to learn what access thissecret (andtoken grants. In theaccess token) to an eavesdropper thereby completely negating proof-of-possession security. Profiles MUST specify how confidentiality protection is provided, and additional protection can be applied by encryptingintrospection response, thetoken,AS also relays information forexample encryption of CWTs is specified in section 5.1 of [I-D.ietf-ace-cbor-web-token]. Developers MUST ensure that the ephemeral credentials (i.e.,theprivate key orclient, such as thesession key) are not leaked to third parties. An adversary inproof-of- possessionof the ephemeral credentials bound to the access token will be able to impersonatekey, through theclient. Be aware thatRS. The RS passes on thisis a real risk with many constrained environments, since adversaries can often easily get physical accessClient Token to thedevices. Clients can at any time request a new proof-of-possession capable access token. If clients have that capability, the AS can keepclient in response to thelifetimesubmission of theaccess token and the associated proof-of-possesion key shorttoken. The client_token parameter is designed to carry such information, andtherefore use shorter proof-of-possession key sizes, which translateis intended toa performance benefit forbe used as described in Figure 15. Resource Authorization Client Server Server | | | | | | C: +--------------->| | | POST | | | Access Token | | | D: +--------------->| | | Introspection | | | Request | | | | | E: +<---------------+ | | Introspection | | | Response | | | + Client Token | |<---------------+ | | 2.01 Created | | | + Client Token | Figure 15: Use of the client_token parameter. The clientand fortoken is a COSE_Encrypted object, containing as payload a CBOR map with theresource server. Shorter keys also leadfollowing claims: cnf REQUIRED if the token type is "pop", OPTIONAL otherwise. Contains information about the proof-of-possession key the client is toshorter messages (particularlyuse withasymmetric keying material). When authorization servers bind symmetric keys to access tokens, they SHOULD scope these access tokens to a specific permissions. Furthermoreits accesstokens using symmetric keys for proof-of- possession SHOULD NOT be targeted at an audience that contains more than one RS, since otherwise any RS intoken. See Section 5.6.4.5. token_type OPTIONAL. See Section 5.6.4.3. profile REQUIRED. See Section 5.6.4.4. rs_cnf OPTIONAL. Contains information about theaudience that receiveskey thataccess token can impersonatetheclientRS uses to authenticate towards theother members ofclient. If theaudience. 7. Privacy Considerations Implementers and users shouldkey is symmetric then this claim MUST NOT beaware of the privacy implicationspart of thedifferent possible deployments ofClient Token, since thisframework. The ASisin a very central position can potentially learn sensitive information abouttheclients requesting access tokens. Ifsame key as theclient credentials grant is used,one specified through the "cnf" claim. This claim uses the same encoding as the "cnf" parameter. See Section 5.6.4.4. The AS encrypts this token using a key shared between the AScan track what kind of accessand the client, so that only the clientintends to perform. With other grantscan decrypt it and access its payload. How this key is established is out of scope of this framework, however it can beprevented by the Resource Owner. To do soestablished at theresource owner needs to bindsame time at which thegrants it issues to anonymous, ephemeral credentials,client's long term token is created. An RS thatdo not allow the ASis configured tolink different grants and thus differentperform introspection, MUST do so immediately after receiving an access token, in order to be able to return a potential client tokenrequests byto thesameclient.If access tokens are only integrity protected andThis does notencrypted, they may reveal information to attackers listening onpreclude thewire, or ableRS toacquire the access tokens in some other way. In the case of CWTs or JWTsperform additional introspection asynchronously, e.g., when the tokenmay e.g. reveal the audience, the scope and the confirmation method used by the client.is later used. 5.7.5. Mapping Introspection parameters to CBOR Thelatter may reveal the client's identity. Clients using asymmetric keys for proof-of-possession shouldintrospection request and response parameters MUST beaware of the consequences ofmapped to CBOR types as specified in Figure 16, using thesame key pairgiven integer abbreviation forproof-of- possession towards different RS. A set of colluding RS or an attacker able to obtain the access tokens will be able to link the requests, or even to determinetheclient's identity. 8. IANA Considerations This specification registers new parameters for OAuth and establishes registries for mappings to CBOR. 8.1. OAuth Introspection Response Parameter Registration This specification registerskey. Note that we have aligned these abbreviatations with thefollowing parametersclaim abbreviations defined inthe OAuth introspection response parameters o Name: "cnf" o Description:[I-D.ietf-ace-cbor-web-token]. /-----------------+----------+-----------------\ | Parameter name | CBOR Key | Major Type | |-----------------+----------+-----------------| | iss | 1 | 3 (text string) | | sub | 2 | 3 | | aud | 3 | 3 | | exp | 4 | 6 tag value 1 | | nbf | 5 | 6 tag value 1 | | iat | 6 | 6 tag value 1 | | cti | 7 | 2 (byte string) | | client_id | 8 | 3 | | scope | 12 | 3 | | token_type | 20 | 3 | | username | 22 | 3 | | cnf | 25 | 5 (map) | | profile | 26 | 0 (uint) | | token | 27 | 3 | | token_type_hint | 28 | 3 | | active | 29 | 0 | | client_token | 30 | 3 | | rs_cnf | 31 | 5 | \-----------------+----------+-----------------/ Figure 16: CBOR Mappings toproveToken Introspection Parameters. 5.8. The Access Token This framework RECOMMENDS theright tousean access token,of CBOR web token (CWT) asdefinedspecified in[RFC7800]. o Change Controller: IESG o Specification Document(s): this document o Name: "aud" o Description: Reference[I-D.ietf-ace-cbor-web-token]. In order tointended receiving RS, as defined in PoP token specification. o Change Controller: IESG o Specification Document(s):facilitate offline processing of access tokens, thisdocument o Name: "profile" o Description: The communication and communication security profile used between clientdraft uses the "cnf" claim from [I-D.jones-ace-cwt-proof-of-possession] andRS,specifies the "scope" claim for CBOR web tokens. The "scope" claim explicitly encodes the scope of a given access token. This claim follows the same encoding rules as defined inACE profiles. o Change Controller: IESG o Specification Document(s): this document o Name: "client_token" o Description: Information that the RS MUST passsection 3.3 of [RFC6749]. The meaning of a specific scope value is application specific and expected to be known to theclient e.g.RS running that application. 5.8.1. The 'Authorization Information' Endpoint The access token, containing authorization information and information about theproof-of-possession keys. o Change Controller: IESG o Specification Document(s): this document o Name: "rs_cnf" o Description: Describes the publickey used by theRS usesclient, needs to be transported toauthenticate. o Change Controller: IESG o Specification Document(s): this document 8.2. OAuth Parameter Registration This specification registersthefollowing parameters inRS so that theOAuth Parameters Registry o Parameter name: "profile" o Parameter usage location: token request,RS can authenticate and authorize the client request. This section defines a method for transporting the access tokenresponse o Change Controller: IESG o Specification Document(s): this document o Name: "cnf" o Description: Keytoprovetheright to use an access token, as defined in [RFC7800]. o Change Controller: IESG o Specification Document(s):RS using a RESTful protocol such as CoAP. Profiles of thisdocument 8.3. OAuth Access Token Types This specification registers the following newframework MAY define other methods for tokentype intransport. The method consists of an authz-info endpoint, implemented by theOAuth Access Token Types Registry o Name: "PoP" o Description:RS. Aproof-of-possession token. o Change Controller: IESG o Specification Document(s):client using thisdocument 8.4. Token Type Mappings A new registry will be requested from IANA, entitled "Token Type Mappings". The registry ismethod MUST make a POST request tobe created as Expert Review Required. 8.4.1. Registration Template Token Type: Name ofthe authz-info endpoint at the RS with the access tokentype as registeredin theOAuth token type registry e.g. "Bearer". Mapped value: Integer representation forpayload. The RS receiving the tokentype value. The key valueMUSTbe an integer inverify therangevalidity of1 to 65536. Change Controller: For Standards Track RFCs, listthe"IESG". For others, givetoken. If thename oftoken is valid, theresponsible party. Other details (e.g., postal address, email address, home page URI) may also be included. Specification Document(s): ReferenceRS MUST respond to thedocument or documents that specifyPOST request with 2.01 (Created). This response MAY contain an identifier of theparameter,preferably including URIs that can be usedtoken (e.g., the cti for a CWT) as a payload, in order toretrieve copies ofallow thedocuments. An indication ofclient to refer to therelevant sections may alsotoken. The RS MUST beincluded butprepared to store at least one access token for future use. This isnot required. 8.4.2. Initial Registry Contents o Parameter name: "Bearer" o Mapped value: 1 o Change Controller: IESG o Specification Document(s): this document o Parameter name: "pop" o Mapped value: 2 o Change Controller: IESG o Specification Document(s): this document 8.5. CBOR Web Token Claims This specification registers the following new claimsa difference to how access tokens are handled in OAuth 2.0, where theCBOR Web Token (CWT) registry: o Claim Name: "scope" o Claim Description: The scope of anaccess tokenas defined in [RFC6749]. o Change Controller: IESG o Specification Document(s): this document o Claim Name: "cnf" o Claim Description: The proof-of-possession key of an accessis typically sent along with each request, and therefore not stored at the RS. If the tokenas defined in [RFC7800]. o Change Controller: IESG o Specification Document(s): this document 8.6. ACE Profile Registry A new registry will be requested from IANA, entitled "ACE Profile Registry". The registryisto be created as Expert Review Required. 8.6.1. Registration Template Profile name: Name ofnot valid, theprofileRS MUST respond with a response code equivalent tobe included intheprofile attribute. Profile description: Text giving an overviewCoAP code 4.01 (Unauthorized). If the token is valid but the audience of theprofile andtoken does not match thecontext it is developed for. Profile ID: Integer value to identifyRS, theprofile. The valueRS MUSTbe an integer in the range of 1respond with a response code equivalent to65536. Change Controller: For Standards Track RFCs, list the "IESG". For others, givethename ofCoAP code 4.03 (Forbidden). If theresponsible party. Other details (e.g., postal address, email address, home page URI) may also be included. Specification Document(s): Referencetoken is valid but is associated tothe document or documentsclaims thatspecifytheparameter,preferably including URIs that can be usedRS cannot process (e.g., an unknown scope) the RS MUST respond with a response code equivalent toretrieve copies ofthedocuments. An indication ofCoAP code 4.00 (Bad Request). In therelevant sections may also be included but is not required. 8.7. OAuth Parameter Mappings Registry A new registry will be requested from IANA, entitled "Token Endpoint CBOR Mappings Registry". The registry is to be created as Expert Review Required. 8.7.1. Registration Template Parameter name: OAuth Parameter name, refers tolatter case thenameRS MAY provide additional information in theOAuth parameter registry e.g. "client_id". CBOR key value: Key value for the claim.error response, in order to clarify what went wrong. Thekey value MUST beRS MAY make aninteger inintrospection request to validate therange of 1token before responding to65536. Change Controller: For Standards Track RFCs, listthe"IESG". For others, givePOST request to thename ofauthz-info endpoint. If theresponsible party. Other details (e.g., postal address, email address, home page URI) may alsointrospection response contains a client token (Section 5.7.4) then this token SHALL beincluded. Specification Document(s): Reference toincluded in thedocument or documents thatpayload of the 2.01 (Created) response. Profiles MUST specify how theparameter,preferably including URIsauthz-info endpoint is protected. Note thatcan be used to retrieve copies ofsince thedocuments. An indication oftoken contains information that allow therelevant sections may also be included but is not required. 8.7.2. Initial Registry Contents o Parameter name: "aud" o CBOR key value: 3 o Change Controller: IESG o Specification Document(s):client and the RS to establish a security context in the first place, mutual authentication may not be possible at thisdocument o Parameter name: "client_id" o CBOR key value: 8 o Change Controller: IESGpoint. 5.8.2. Token Expiration Depending on the capabilities of the RS, there are various ways in which it can verify the validity of a received access token. Here follows a list of the possibilities including what functionality they require of the RS. oSpecification Document(s):The token is a CWT and includes an "exp" claim and possibly the "nbf" claim. The RS verifies these by comparing them to values from its internal clock as defined in [RFC7519]. In thisdocument o Parameter name: "client_secret" o CBOR key value: 9 o Change Controller: IESG o Specification Document(s):case the RS's internal clock must reflect the current date and time, or at least be synchronized with the AS's clock. How thisdocument o Parameter name: "response_type" o CBOR key value: 10 o Change Controller: IESG o Specification Document(s):clock synchronization would be performed is out of scope for thisdocument o Parameter name: "redirect_uri"specification. oCBOR key value: 11The RS verifies the validity of the token by performing an introspection request as specified in Section 5.7. This requires the RS to have a reliable network connection to the AS and to be able to handle two secure sessions in parallel (C to RS and AS to RS). oChange Controller: IESG o Specification Document(s):The RS and the AS both store a sequence number linked to their common security association. The AS increments thisdocument o Parameter name: "scope" o CBOR key value: 12 o Change Controller: IESG o Specification Document(s):number for each access token it issues and includes it in the access token, which is a CWT. The RS keeps track of the most recently received sequence number, and only accepts tokens as valid, that are in a certain range around thisdocument o Parameter name: "state" o CBOR key value: 13 o Change Controller: IESG o Specification Document(s):number. This method does only require the RS to keep track of the sequence number. The method does not provide timely expiration, but it makes sure that older tokens cease to be valid after a certain number of newer ones got issued. For a constrained RS with no network connectivity and no means of reliably measuring time, thisdocumentis the best that can be achieved. If a token that authorizes a long running request such as a CoAP Observe [RFC7641] expires, the RS MUST send an error response with the response code 4.01 Unauthorized to the client and then terminate processing the long running request. 6. Security Considerations Security considerations applicable to authentication and authorization in RESTful environments provided in OAuth 2.0 [RFC6749] apply to this work, as well as the security considerations from [I-D.ietf-ace-actors]. Furthermore [RFC6819] provides additional security considerations for OAuth which apply to IoT deployments as well. A large range of threats can be mitigated by protecting the contents of the access token by using a digital signature or a keyed message digest (MAC) or an Authenticated Encryption with Associated Data (AEAD) algorithm. Consequently, the token integrity protection MUST be applied to prevent the token from being modified, particularly since it contains a reference to the symmetric key or the asymmetric key. If the access token contains the symmetric key, this symmetric key MUST be encrypted by the authorization server so that only the resource server can decrypt it. Note that using an AEAD algorithm is preferable over using a MAC unless the message needs to be publicly readable. It is important for the authorization server to include the identity of the intended recipient (the audience), typically a single resource server (or a list of resource servers), in the token. Using a single shared secret with multiple resource servers to simplify key management is NOT RECOMMENDED since the benefit from using the proof- of-possession concept is significantly reduced. The authorization server MUST offer confidentiality protection for any interactions with the client. This step is extremely important since the client may obtain the proof-of-possession key from the authorization server for use with a specific access token. Not using confidentiality protection exposes this secret (and the access token) to an eavesdropper thereby completely negating proof-of-possession security. Profiles MUST specify how confidentiality protection is provided, and additional protection can be applied by encrypting the token, for example encryption of CWTs is specified in section 5.1 of [I-D.ietf-ace-cbor-web-token]. Developers MUST ensure that the ephemeral credentials (i.e., the private key or the session key) are not leaked to third parties. An adversary in possession of the ephemeral credentials bound to the access token will be able to impersonate the client. Be aware that this is a real risk with many constrained environments, since adversaries can often easily get physical access to the devices. Clients can at any time request a new proof-of-possession capable access token. If clients have that capability, the AS can keep the lifetime of the access token and the associated proof-of-possession key short and therefore use shorter proof-of-possession key sizes, which translate to a performance benefit for the client and for the resource server. Shorter keys also lead to shorter messages (particularly with asymmetric keying material). When authorization servers bind symmetric keys to access tokens, they SHOULD scope these access tokens to a specific permissions. Furthermore access tokens using symmetric keys for proof-of- possession SHOULD NOT be targeted at an audience that contains more than one RS, since otherwise any RS in the audience that receives that access token can impersonate the client towards the other members of the audience. 6.1. Unprotected AS Information Initially, no secure channel exists to protect the communication between C and RS. Thus, C cannot determine if the AS information contained in an unprotected response from RS to an unauthorized request (c.f. Section 5.1.2) is authentic. It is therefore advisable to provide C with a (possibly hard-coded) list of trustworthy authorization servers. AS information responses referring to a URI not listed there would be ignored. 6.2. Use of Nonces for Replay Protection RS may add a nonce to the AS Information message sent as a response to an unauthorized request to ensure freshness of an Access Token subsequently presented to RS. While a timestamp of some granularity would be sufficient to protect against replay attacks, using randomized nonce is preferred to prevent disclosure of information about RS's internal clock characteristics. 6.3. Combining profiles There may exist reasonable use cases where implementers want to combine different profiles of this framework, e.g., using an MQTT profile between client and RS, while using a DTLS profile for interactions between client and AS. Profiles should be designed in a way that the security of a protocol interaction does not depend on the specific security mechanisms used in other protocol interactions. 6.4. Error responses The various error responses defined in this framework may leak information to an adversary. For example errors responses for requests to the Authorization Information endpoint can reveal information about an otherwise opaque access token to an adversary who has intercepted this token. This framework is written under the assumption that, in general, the benefits of detailed error messages outweigh the risk due to information leakage. For particular use cases, where this assessment does not apply, detailed error messages can be replaced by more generic ones. 7. Privacy Considerations Implementers and users should be aware of the privacy implications of the different possible deployments of this framework. The AS is in a very central position and can potentially learn sensitive information about the clients requesting access tokens. If the client credentials grant is used, the AS can track what kind of access the client intends to perform. With other grants this can be prevented by the Resource Owner. To do so, the resource owner needs to bind the grants it issues to anonymous, ephemeral credentials that do not allow the AS to link different grants and thus different access token requests by the same client. If access tokens are only integrity protected and not encrypted, they may reveal information to attackers listening on the wire, or able to acquire the access tokens in some other way. In the case of CWTs the token may e.g., reveal the audience, the scope and the confirmation method used by the client. The latter may reveal the identity of the device or application running the client. This may be linkable to the identity of the person using the client (if there is a person and not a machine-to-machine interaction). Clients using asymmetric keys for proof-of-possession should be aware of the consequences of using the same key pair for proof-of- possession towards different RSs. A set of colluding RSs or an attacker able to obtain the access tokens will be able to link the requests, or even to determine the client's identity. An unprotected response to an unauthorized request (c.f. Section 5.1.2) may disclose information about RS and/or its existing relationship with C. It is advisable to include as little information as possible in an unencrypted response. Means of encrypting communication between C and RS already exist, more detailed information may be included with an error response to provide C with sufficient information to react on that particular error. 8. IANA Considerations This specification registers new parameters for OAuth and establishes registries for mappings to CBOR. 8.1. OAuth Introspection Response Parameter Registration This specification registers the following parameters in the OAuth introspection response parameters oParameter name: "code"Name: "cnf" oCBOR key value: 14Description: Key to prove the right to use an access token, formatted as specified in [I-D.jones-ace-cwt-proof-of-possession]. o Change Controller: IESG o Specification Document(s): this document oParameter name: "error"Name: "profile" oCBOR key value: 15Description: The communication and communication security profile used between client and RS, as defined in ACE profiles. o Change Controller: IESG o Specification Document(s): this document oParameter name: "error_description"Name: "client_token" oCBOR key value: 16Description: Information that the RS MUST pass to the client e.g., about the proof-of-possession keys. o Change Controller: IESG o Specification Document(s): this document oParameter name: "error_uri"Name: "rs_cnf" oCBORDescription: Describes the public keyvalue: 17the RS uses to authenticate. o Change Controller: IESG o Specification Document(s): this documento8.2. OAuth Parametername: "grant_type" o CBOR key value: 18 o Change Controller: IESG o Specification Document(s): this documentRegistration This specification registers the following parameters in the OAuth Parameters Registry o Parameter name:"access_token""profile" oCBOR key value: 19Parameter usage location: token request, and token response o Change Controller: IESG o Specification Document(s): this document oParameter name: "token_type"Name: "cnf" oCBOR key value: 20Description: Key to prove the right to use an access token, formatted as defined in [I-D.jones-ace-cwt-proof-of-possession]. o Change Controller: IESG o Specification Document(s): this document 8.3. OAuth Access Token Types This specification registers the following new token type in the OAuth Access Token Types Registry oParameter name: "expires_in"Name: "PoP" oCBOR key value: 21Description: A proof-of-possession token. o Change Controller: IESG o Specification Document(s): this documento Parameter name: "username" o8.4. OAuth Token Type CBOR Mappings A new registry will be requested from IANA, entitled "Token Type Mappings". The registry is to be created as Expert Review Required. 8.4.1. Registration Template Token Type: Name of token type as registered in the OAuth token type registry e.g., "Bearer". Mapped value: Integer representation for the token type value. The keyvalue: 22 ovalue MUST be an integer. Integer values from -65536 to 65535 are designated as Specification Required. Integer values of greater than 65535 designated as expert review. Integer values less than -65536 are marked as private use. Change Controller:IESG oFor Standards Track RFCs, list the "IESG". For others, give the name of the responsible party. Other details (e.g., postal address, email address, home page URI) may also be included. Specification Document(s):thisReference to the document or documents that specify the parameter,preferably including URIs that can be used to retrieve copies of the documents. An indication of the relevant sections may also be included but is not required. 8.4.2. Initial Registry Contents o Parameter name:"password""Bearer" oCBOR keyMapped value:231 o Change Controller: IESG o Specification Document(s): this document o Parameter name:"refresh_token""pop" oCBOR keyMapped value:242 o Change Controller: IESG o Specification Document(s): this document 8.5. CBOR Web Token Claims This specification registers the following new claims in the CBOR Web Token (CWT) registry: oParameter name: "cnf"Claim Name: "scope" oCBOR key value: 25Claim Description: The scope of an access token as defined in [RFC6749]. o Change Controller: IESG o Specification Document(s): this documento Parameter8.6. ACE OAuth Profile Registry A new registry will be requested from IANA, entitled "ACE Profile Registry". The registry is to be created as Expert Review Required. 8.6.1. Registration Template Profile name:"profile" o CBOR key value: 26 oName of the profile to be included in the profile attribute. Profile description: Text giving an overview of the profile and the context it is developed for. Profile ID: Integer value to identify the profile. Integer values from -65536 to 65535 are designated as Specification Required. Integer values of greater than 65535 designated as expert review. Integer values less than -65536 are marked as private use. Change Controller:IESG oFor Standards Track RFCs, list the "IESG". For others, give the name of the responsible party. Other details (e.g., postal address, email address, home page URI) may also be included. Specification Document(s):thisReference to the document8.8. Introspection Endpointor documents that specify the parameter,preferably including URIs that can be used to retrieve copies of the documents. An indication of the relevant sections may also be included but is not required. 8.7. OAuth CBOR Parameter Mappings Registry A new registry will be requested from IANA, entitled"Introspection"Token Endpoint CBOR Mappings Registry". The registry is to be created as Expert Review Required.8.8.1.8.7.1. Registration TemplateResponse parameterParameter name:Name ofOAuth Parameter name, refers to theresponse parameter as definedname in the"OAuth Token Introspection Response"OAuth parameter registrye.g. "active".e.g., "client_id". CBOR key value: Key value for the claim. The key value MUST be aninteger in the range of 1integer. Integer values from -65536 to65536.65535 are designated as Specification Required. Integer values of greater than 65535 designated as expert review. Integer values less than -65536 are marked as private use. Change Controller: For Standards Track RFCs, list the "IESG". For others, give the name of the responsible party. Other details (e.g., postal address, email address, home page URI) may also be included. Specification Document(s): Reference to the document or documents that specify the parameter,preferably including URIs that can be used to retrieve copies of the documents. An indication of the relevant sections may also be included but is not required.8.8.2.8.7.2. Initial Registry Contents oResponse parameterParameter name:"iss""aud" o CBOR key value:13 o Change Controller: IESG o Specification Document(s): this document oResponse parameterParameter name:"sub""client_id" o CBOR key value:28 o Change Controller: IESG o Specification Document(s): this document oResponse parameterParameter name:"aud""client_secret" o CBOR key value:39 o Change Controller: IESG o Specification Document(s): this document oResponse parameterParameter name:"exp""response_type" o CBOR key value:410 o Change Controller: IESG o Specification Document(s): this document oResponse parameterParameter name:"nbf""redirect_uri" o CBOR key value:511 o Change Controller: IESG o Specification Document(s): this document oResponse parameterParameter name:"iat""scope" o CBOR key value:612 o Change Controller: IESG o Specification Document(s): this document oResponse parameterParameter name:"cti""state" o CBOR key value:713 o Change Controller: IESG o Specification Document(s): this document oResponse parameterParameter name:"client_id""code" o CBOR key value:814 o Change Controller: IESG o Specification Document(s): this document oResponse parameterParameter name:"scope""error" o CBOR key value:1215 o Change Controller: IESG o Specification Document(s): this document oResponse parameterParameter name:"token_type""error_description" o CBOR key value:2016 o Change Controller: IESG o Specification Document(s): this document oResponse parameterParameter name:"username""error_uri" o CBOR key value:2217 o Change Controller: IESG o Specification Document(s): this document o Parameter name:"cnf""grant_type" o CBOR key value:2518 o Change Controller: IESG o Specification Document(s): this document o Parameter name:"profile""access_token" o CBOR key value:2619 o Change Controller: IESG o Specification Document(s): this document oResponse parameterParameter name:"token""token_type" o CBOR key value:2720 o Change Controller: IESG o Specification Document(s): this document oResponse parameterParameter name:"token_type_hint""expires_in" o CBOR key value: 21 o Change Controller: IESG o Specification Document(s): this document o Parameter name: "username" o CBOR key value: 22 o Change Controller: IESG o Specification Document(s): this document o Parameter name: "password" o CBOR key value:2823 o Change Controller: IESG o Specification Document(s): this document oResponse parameterParameter name:"active""refresh_token" o CBOR key value:2924 o Change Controller: IESG o Specification Document(s): this document oResponse parameterParameter name:"client_token""cnf" o CBOR key value:3025 o Change Controller: IESG o Specification Document(s): this document oResponse parameterParameter name:"rs_cnf""profile" o CBOR key value:3126 o Change Controller: IESG o Specification Document(s): this document8.9. CoAP Option Number Registration This section registers the "Access-Token" CoAP Option Number in the "CoRE Parameters" sub-registry "CoAP Option Numbers" in the manner described in [RFC7252]. Name Access-Token Number TBD Reference [This document]. Meaning in Request Contains an Access Token according to [This document] containing access permissions of the client. Meaning in Response Not used in response Safe-to-Forward Yes Format Based on the observer the format is perceived differently. Opaque data to the client and CWT or reference token to the RS. Length Less then 255 bytes 8.10. CWT Confirmation Methods8.8. Introspection Endpoint CBOR Mappings RegistryThis specification establishes the IANA "CWT Confirmation Methods"A new registryfor CWT "cnf" member values.will be requested from IANA, entitled "Introspection Endpoint CBOR Mappings Registry". The registryrecords the confirmation method member and a reference to the specification that defines it. 8.10.1. Registration Template Confirmation Method Name: The name requested (e.g., "kid"). This nameisintendedto behuman readable and be used for debugging purposes. It is case sensitive. Names may not match other registered names in a case- insensitive manner unlesscreated as Expert Review Required. 8.8.1. Registration Template Response parameter name: Name of theDesignated Experts state that there is a compelling reason to allow an exception. Confirmation Method Value: Integer representation forresponse parameter as defined in theconfirmation method value. Intended"OAuth Token Introspection Response" registry e.g., "active". CBOR key value: Key value foruse to uniquely identifytheconfirmation method.claim. The key value MUST be aninteger in the range of 1integer. Integer values from -65536 to65536. Confirmation Method Description: Brief description of the confirmation method (e.g. "Key Identifier").65535 are designated as Specification Required. Integer values of greater than 65535 designated as expert review. Integer values less than -65536 are marked as private use. Change Controller: For Standards Track RFCs, list the "IESG". For others, give the name of the responsible party. Other details (e.g., postal address, email address, home page URI) may also be included. Specification Document(s): Reference to the document or documents that specify theparameter, preferablyparameter,preferably including URIs that can be used to retrieve copies of the documents. An indication of the relevant sections may also be included but is not required.8.10.2.8.8.2. Initial Registry Contents oConfirmation Method Name: "COSE_Key"Response parameter name: "iss" o CBOR key value: 1 o Change Controller: IESG o Specification Document(s): this document o Response parameter name: "sub" o CBOR key value: 2 o Change Controller: IESG o Specification Document(s): this document o Response parameter name: "aud" o CBOR key value: 3 o Change Controller: IESG o Specification Document(s): this document o Response parameter name: "exp" o CBOR key value: 4 o Change Controller: IESG o Specification Document(s): this document o Response parameter name: "nbf" o CBOR key value: 5 o Change Controller: IESG o Specification Document(s): this document o Response parameter name: "iat" o CBOR key value: 6 o Change Controller: IESG o Specification Document(s): this document o Response parameter name: "cti" o CBOR key value: 7 o Change Controller: IESG o Specification Document(s): this document o Response parameter name: "client_id" o CBOR key value: 8 o Change Controller: IESG o Specification Document(s): this document o Response parameter name: "scope" o CBOR key value: 12 o Change Controller: IESG o Specification Document(s): this document o Response parameter name: "token_type" o CBOR key value: 20 o Change Controller: IESG o Specification Document(s): this document o Response parameter name: "username" o CBOR key value: 22 o Change Controller: IESG o Specification Document(s): this document o Parameter name: "cnf" o CBOR key value: 25 o Change Controller: IESG o Specification Document(s): this document o Parameter name: "profile" o CBOR key value: 26 o Change Controller: IESG oConfirmation Method Value: 1Specification Document(s): this document oConfirmation Method Description: A COSE_Key that is either a publicResponse parameter name: "token" o CBOR keyor a symmetric key.value: 27 o Change Controller: IESG o Specification Document(s): this document oConfirmation Method Name: "COSE_Encrypted"Response parameter name: "token_type_hint" oConfirmation Method Value: 2CBOR key value: 28 oConfirmation Method Description: A COSE_Encrypted structure that wraps a COSE_Key containing a symmetric key.Change Controller: IESG o Specification Document(s): this document o Response parameter name: "active" o CBOR key value: 29 o Change Controller: IESG o Specification Document(s): this document oConfirmation Method Name: "Key Identifier"Response parameter name: "client_token" oConfirmation Method Value: 3CBOR key value: 30 oConfirmation Method Description: AChange Controller: IESG o Specification Document(s): this document o Response parameter name: "rs_cnf" o CBOR keyidentifier.value: 31 o Change Controller: IESG o Specification Document(s): this document 8.9. CoAP Option Number Registration This section registers the "Access-Token" CoAP Option Number in the "CoRE Parameters" sub-registry "CoAP Option Numbers" in the manner described in [RFC7252]. Name Access-Token Number TBD Reference [This document]. Meaning in Request Contains an Access Token according to [This document] containing access permissions of the client. Meaning in Response Not used in response Safe-to-Forward Yes Format Based on the observer the format is perceived differently. Opaque data to the client and CWT or reference token to the RS. Length Less then 255 bytes 9. AcknowledgmentsWe would likeThis document is a product of the ACE working group of the IETF. Thanks tothankEve Maler for her contributions to the use of OAuth 2.0 and UMA in IoT scenarios, Robert Taylor for his discussion input, and Malisa Vucinic for his input on the predecessors of this proposal.Finally, we would like to thank the ACE working group in general for their feedback. We would likeThanks tothankthe authors ofdraft-ietf-oauth-pop-key- distribution,draft-ietf-oauth-pop-key-distribution, from wherewe copiedlarge parts ofourthe securityconsiderations.considerations where copied. Thanks to Stefanie Gerdes, Olaf Bergmann, and Carsten Bormann for contributing their work on AS discovery from draft-gerdes-ace-dcaf- authorize (see Section 5.1). Ludwig Seitz and Goeran Selander worked on this document as part of the CelticPlus project CyberWI, with funding from Vinnova. 10. References 10.1. Normative References [I-D.ietf-ace-cbor-web-token] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig, "CBOR Web Token (CWT)", draft-ietf-ace-cbor-web-token-08 (work in progress), August 2017. [I-D.jones-ace-cwt-proof-of-possession] Jones, M., Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and H. Tschofenig, "Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs)", draft-jones-ace- cwt-proof-of-possession-01 (work in progress), June 2017. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC2119,2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc- editor.org/info/rfc2119>. [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005, <https://www.rfc-editor.org/info/rfc3986>. [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347, January 2012, <https://www.rfc-editor.org/info/rfc6347>. [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained Application Protocol (CoAP)", RFC 7252, DOI 10.17487/RFC7252, June 2014, <https://www.rfc- editor.org/info/rfc7252>. [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection", RFC 7662, DOI 10.17487/RFC7662, October 2015, <https://www.rfc-editor.org/info/rfc7662>. [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)", RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://www.rfc-editor.org/info/rfc8152>. 10.2. Informative References [I-D.erdtman-ace-rpcc] Seitz, L. and S. Erdtman, "Raw-Public-Key and Pre-Shared- Key as OAuth client credentials", draft-erdtman-ace- rpcc-01 (work in progress), August 2017. [I-D.ietf-ace-actors] Gerdes, S., Seitz, L., Selander, G., and C. Bormann, "An architecture for authorization in constrained environments", draft-ietf-ace-actors-05 (work in progress), March 2017. [I-D.ietf-core-object-security] Selander, G., Mattsson, J., Palombini, F., and L. Seitz, "Object Security for Constrained RESTful Environments (OSCORE)", draft-ietf-core-object-security-05 (work in progress), September 2017. [I-D.ietf-core-resource-directory] Shelby, Z., Koster, M., Bormann, C., Stok, P., and C. Amsuess, "CoRE Resource Directory", draft-ietf-core- resource-directory-11 (work in progress), July 2017. [I-D.ietf-oauth-device-flow] Denniss, W., Bradley, J., Jones, M., and H. Tschofenig, "OAuth 2.0 Device Flow for Browserless and Input Constrained Devices", draft-ietf-oauth-device-flow-06 (work in progress), May 2017. [I-D.ietf-oauth-discovery] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0 Authorization Server Metadata", draft-ietf-oauth- discovery-07 (work in progress), September 2017. [I-D.ietf-oauth-native-apps] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps", draft-ietf-oauth-native-apps-12 (work in progress), June 2017. [Margi10impact] Margi, C., de Oliveira, B., de Sousa, G., Simplicio Jr, M., Barreto, P., Carvalho, T., Naeslund, M., and R. Gold, "Impact of Operating Systems on Wireless Sensor Networks (Security) Applications and Testbeds", Proceedings of the 19th International Conference on Computer Communications and Networks (ICCCN), 2010 August. [RFC4949] Shirey, R., "Internet Security Glossary, Version 2", FYI 36, RFC 4949, DOI10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>. [RFC6347] Rescorla, E.10.17487/RFC4949, August 2007, <https://www.rfc-editor.org/info/rfc4949>. [RFC5246] Dierks, T. andN. Modadugu, "DatagramE. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC6347,5246, DOI10.17487/RFC6347, January 2012, <http://www.rfc-editor.org/info/rfc6347>. [RFC7252]10.17487/RFC5246, August 2008, <https://www.rfc- editor.org/info/rfc5246>. [RFC6690] Shelby, Z.,Hartke, K.,"Constrained RESTful Environments (CoRE) Link Format", RFC 6690, DOI 10.17487/RFC6690, August 2012, <https://www.rfc-editor.org/info/rfc6690>. [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://www.rfc-editor.org/info/rfc6749>. [RFC6819] Lodderstedt, T., Ed., McGloin, M., andC.P. Hunt, "OAuth 2.0 Threat Model and Security Considerations", RFC 6819, DOI 10.17487/RFC6819, January 2013, <https://www.rfc- editor.org/info/rfc6819>. [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049, October 2013, <https://www.rfc-editor.org/info/rfc7049>. [RFC7159] Bray, T., Ed., "TheConstrained ApplicationJavaScript Object Notation (JSON) Data Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March 2014, <https://www.rfc-editor.org/info/rfc7159>. [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for Constrained-Node Networks", RFC 7228, DOI 10.17487/RFC7228, May 2014, <https://www.rfc- editor.org/info/rfc7228>. [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol(CoAP)",(HTTP/1.1): Semantics and Content", RFC7252,7231, DOI10.17487/RFC7252,10.17487/RFC7231, June 2014,<http://www.rfc-editor.org/info/rfc7252>. [RFC7662] Richer,<https://www.rfc- editor.org/info/rfc7231>. [RFC7519] Jones, M., Bradley, J.,Ed., "OAuth 2.0and N. Sakimura, "JSON Web TokenIntrospection",(JWT)", RFC7662,7519, DOI10.17487/RFC7662, October10.17487/RFC7519, May 2015,<http://www.rfc-editor.org/info/rfc7662>. [RFC7800]<https://www.rfc-editor.org/info/rfc7519>. [RFC7521] Campbell, B., Mortimore, C., Jones, M.,Bradley, J.,andH. Tschofenig, "Proof-of- Possession Key SemanticsY. Goland, "Assertion Framework forJSON Web Tokens (JWTs)",OAuth 2.0 Client Authentication and Authorization Grants", RFC7800,7521, DOI10.17487/RFC7800, April 2016, <http://www.rfc-editor.org/info/rfc7800>. [RFC8152] Schaad,10.17487/RFC7521, May 2015, <https://www.rfc-editor.org/info/rfc7521>. [RFC7591] Richer, J.,"CBOR Object SigningEd., Jones, M., Bradley, J., Machulak, M., andEncryption (COSE)",P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol", RFC8152,7591, DOI 10.17487/RFC7591, July 2015, <https://www.rfc-editor.org/info/rfc7591>. [RFC7641] Hartke, K., "Observing Resources in the Constrained Application Protocol (CoAP)", RFC 7641, DOI10.17487/RFC8152, July 2017, <http://www.rfc-editor.org/info/rfc8152>. 10.2. Informative References [I-D.ietf-ace-actors] Gerdes, S.,10.17487/RFC7641, September 2015, <https://www.rfc- editor.org/info/rfc7641>. [RFC7744] Seitz, L.,Selander, G., and C. Bormann, "An architecture for authorization in constrained environments", draft-ietf-ace-actors-05 (work in progress), March 2017. [I-D.ietf-ace-cbor-web-token] Jones, M., Wahlstroem, E., Erdtman,Ed., Gerdes, S.,and H. Tschofenig, "CBOR Web Token (CWT)", draft-ietf-ace-cbor-web-token-07 (work in progress), July 2017. [I-D.ietf-core-object-security]Ed., Selander, G.,Mattsson, J., Palombini, F., and L. Seitz, "Object Security of CoAP (OSCOAP)", draft-ietf-core- object-security-04 (work in progress), July 2017. [I-D.ietf-oauth-device-flow] Denniss, W., Bradley, J., Jones,Mani, M., andH. Tschofenig, "OAuth 2.0 Device FlowS. Kumar, "Use Cases forBrowserlessAuthentication andInput Constrained Devices", draft-ietf-oauth-device-flow-06 (workAuthorization inprogress), May 2017. [I-D.ietf-oauth-native-apps] Denniss, W.Constrained Environments", RFC 7744, DOI 10.17487/RFC7744, January 2016, <https://www.rfc- editor.org/info/rfc7744>. [RFC7959] Bormann, C. andJ. Bradley, "OAuth 2.0 for Native Apps", draft-ietf-oauth-native-apps-12 (workZ. Shelby, Ed., "Block-Wise Transfers inprogress), June 2017. [RFC4949] Shirey, R., "Internet Security Glossary, Version 2", FYI 36,the Constrained Application Protocol (CoAP)", RFC4949,7959, DOI10.17487/RFC4949,10.17487/RFC7959, August2007, <http://www.rfc-editor.org/info/rfc4949>. [RFC5246] Dierks, T.2016, <https://www.rfc- editor.org/info/rfc7959>. Appendix A. Design Justification This section provides further insight into the design decisions of the solution documented in this document. Section 3 lists several building blocks and briefly summarizes their importance. The justification for offering some of those building blocks, as opposed to using OAuth 2.0 as is, is given below. Common IoT constraints are: Low Power Radio: Many IoT devices are equipped with a small battery which needs to last for a long time. For many constrained wireless devices, the highest energy cost is associated to transmitting or receiving messages (roughly by a factor of 10 compared to e.g. AES) [Margi10impact]. It is therefore important to keep the total communication overhead low, including minimizing the number andE. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008, <http://www.rfc-editor.org/info/rfc5246>. [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link Format", RFC 6690, DOI 10.17487/RFC6690, August 2012, <http://www.rfc-editor.org/info/rfc6690>. [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI 10.17487/RFC6749, October 2012, <http://www.rfc-editor.org/info/rfc6749>. [RFC6819] Lodderstedt, T., Ed., McGloin, M.,size of messages sent andP. Hunt, "OAuth 2.0 Threat Modelreceived, which has an impact of choice on the message format and protocol. By using CoAP over UDP and CBOR encoded messages, some of these aspects are addressed. SecurityConsiderations", RFC 6819, DOI 10.17487/RFC6819, January 2013, <http://www.rfc-editor.org/info/rfc6819>. [RFC7049] Bormann, C.protocols contribute to the communication overhead andP. Hoffman, "Concise Binary Object Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049, October 2013, <http://www.rfc-editor.org/info/rfc7049>. [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March 2014, <http://www.rfc-editor.org/info/rfc7159>. [RFC7228] Bormann, C., Ersue, M.,can, in some cases, be optimized. For example, authentication andA. Keranen, "Terminologykey establishment may, in certain cases where security requirements allow, be replaced by provisioning of security context by a trusted third party, using transport or application layer security. Low CPU Speed: Some IoT devices are equipped with processors that are significantly slower than those found in most current devices on the Internet. This typically has implications on what timely cryptographic operations a device is capable of performing, which in turn impacts e.g., protocol latency. Symmetric key cryptography may be used instead of the computationally more expensive public key cryptography where the security requirements so allows, but this may also require support forConstrained-Node Networks", RFC 7228, DOI 10.17487/RFC7228, May 2014, <http://www.rfc-editor.org/info/rfc7228>. [RFC7231] Fielding, R., Ed.trusted third party assisted secret key establishment using transport or application layer security. Small Amount of Memory: Microcontrollers embedded in IoT devices are often equipped with small amount of RAM andJ. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Semanticsflash memory, which places limitations what kind of processing can be performed andContent", RFC 7231, DOI 10.17487/RFC7231, June 2014, <http://www.rfc-editor.org/info/rfc7231>. [RFC7519] Jones, M., Bradley, J.,how much code can be put on those devices. To reduce code size fewer andN. Sakimura, "JSON Web Token (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015, <http://www.rfc-editor.org/info/rfc7519>. [RFC7521] Campbell, B., Mortimore, C., Jones, M.,smaller protocol implementations can be put on the firmware of such a device. In this case, CoAP may be used instead of HTTP, symmetric key cryptography instead of public key cryptography, andY. Goland, "Assertion Framework for OAuth 2.0 ClientCBOR instead of JSON. Authentication andAuthorization Grants", RFC 7521, DOI 10.17487/RFC7521, May 2015, <http://www.rfc-editor.org/info/rfc7521>. [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M.,key establishment protocol, e.g., the DTLS handshake, in comparison with assisted key establishment also has an impact on memory and code. User Interface Limitations: Protecting access to resources is both an important security as well as privacy feature. End users and enterprise customers may not want to give access to the data collected by their IoT device or to functions it may offer to third parties. Since the classical approach of requesting permissions from end users via a rich user interface does not work in many IoT deployment scenarios, these functions need to be delegated to user-controlled devices that are better suitable for such tasks, such as smart phones andP. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol", RFC 7591, DOI 10.17487/RFC7591, July 2015, <http://www.rfc-editor.org/info/rfc7591>. [RFC7641] Hartke, K., "Observing Resourcestablets. Communication Constraints: In certain constrained settings an IoT device may not be able to communicate with a given device at all times. Devices may be sleeping, or just disconnected from the Internet because of general lack of connectivity in theConstrained Application Protocol (CoAP)", RFC 7641, DOI 10.17487/RFC7641, September 2015, <http://www.rfc-editor.org/info/rfc7641>. [RFC7744] Seitz, L., Ed., Gerdes, S., Ed., Selander, G., Mani, M., and S. Kumar, "Use Casesarea, forAuthenticationcost reasons, or for security reasons, e.g., to avoid an entry point for Denial-of- Service attacks. The communication interactions this framework builds upon (as shown graphically in Figure 1) may be accomplished using a variety of different protocols, andAuthorizationnot all parts of the message flow are used in all applications due to the communication constraints. Deployments making use of CoAP are expected, but not limited to, other protocols such as HTTP, HTTP/2 or other specific protocols, such as Bluetooth Smart communication, that do not necessarily use IP could also be used. The latter raises the need for application layer security over the various interfaces. In the light of these constraints we have made the following design decisions: CBOR, COSE, CWT: This framework REQUIRES the use of CBOR [RFC7049] as data format. Where CBOR data needs to be protected, the use of COSE [RFC8152] is RECOMMENDED. Furthermore where self-contained tokens are needed, this framework RECOMMENDS the use of CWT [I-D.ietf-ace-cbor-web-token]. These measures aim at reducing the size of messages sent over the wire, the RAM size of data objects that need to be kept inConstrained Environments", RFC 7744, DOI 10.17487/RFC7744, January 2016, <http://www.rfc-editor.org/info/rfc7744>. [RFC7959] Bormann, C.memory andZ. Shelby, Ed., "Block-Wise Transfers intheConstrained Application Protocol (CoAP)", RFC 7959, DOI 10.17487/RFC7959, August 2016, <http://www.rfc-editor.org/info/rfc7959>. Appendix A. Design Justificationsize of libraries that devices need to support. CoAP: Thissection provides further insight intoframework RECOMMENDS thedesign decisionsuse of CoAP [RFC7252] instead of HTTP. This does not preclude thesolution documented in this document.use of other protocols specifically aimed at constrained devices, like e.g. Bluetooth Low energy (see Section3 lists several building blocks and briefly summarizes their importance. The justification for offering some3.2). This aims again at reducing the size ofthose building blocks, as opposedmessages sent over the wire, the RAM size of data objects that need tousing OAuth 2.0 as is, is given below. Common IoT constraints are: Low Power Radio: Many IoTbe kept in memory and the size of libraries that devicesare equipped with a small battery which needsneed tolastsupport. RS Information: This framework defines the name "RS Information" fora long time. For many constrained wireless devicesdata concerning thehighest energy cost is associated to transmitting or receiving messages. It is therefore importantRS that the AS returns tokeepthetotal communication overhead low, including minimizingclient in an access token response (see Section 5.6.2). This includes thenumber and size of messages sent"profile" andreceived,the "rs_cnf" parameters. This aims at enabling scenarios, where a powerful client, supporting multiple profiles, needs to interact with a RS for whichhas an impactit does not know the supported profiles and the raw public key. Proof-of-Possession: This framework makes use ofchoice onproof-of-possession tokens, using themessage format"cnf" claim [I-D.jones-ace-cwt-proof-of-possession]. A semantically andprotocol. By using CoAP over UDP,syntactically identical request andCBOR encoded messages some of these aspects are addressed. Security protocols contribute toresponse parameter is defined for thecommunication overheadtoken endpoint, to allow requesting andcanstating confirmation keys. This aims at making token theft harder. Token theft is specifically relevant insome casesconstrained use cases, as communication often passes through middle-boxes, which could beoptimized. For example authenticationable to steal bearer tokens andkey establishment may in certain cases where security requirements so allows be replaced by provisioninguse them to gain unauthorized access. Auth-Info endpoint: This framework introduces a new way ofsecurity context byproviding access tokens to atrusted third party, using transport or application layer security. Low CPU Speed: Some IoT devices are equipped with processors that are significantly slower than those found in most current devices on the Internet. This typically has implications on what timely cryptographic operationsRS by exposing adevice is capableauthz-info endpoint, toperform,whichin turn impacts e.g. protocol latency. Symmetric key cryptography mayaccess tokens can beused insteadPOSTed. This aims at reducing the size of thecomputationally more expensive public key cryptography whererequest message and thesecurity requirements so allows, but this may also require support for trusted third party assisted secret key establishment using transport or application layer security. Small Amountcode complexity at the RS. The size ofMemory: Microcontrollers embeddedthe request message is problematic, since many constrained protocols have severe message size limitations at the physical layer (e.g. inIoT devices are often equippedthe order of 100 bytes). This means that larger packets get fragmented, which in turn combines badly withsmall amountthe high rate ofRAMpacket loss, andflash memory, which places limitations what kindthe need to retransmit the whole message if one packet gets lost. Thus separating sending ofprocessing can be performedthe request andhow much code can be put on those devices. Tosending of the access tokens helps to reducecode size fewer and smaller protocol implementations can be put onfragmentation. Client Credentials Grant: This framework RECOMMENDS thefirmware of such a device. In this case, CoAP may be used instead of HTTP, symmetric key cryptography insteaduse ofpublic key cryptography, and CBOR insteadthe client credentials grant for machine-to-machine communication use cases, where manual intervention ofJSON. Authentication and key establishment protocol, e.g.theDTLS handshake, in comparison with assisted key establishment also has an impact on memory and code. User Interface Limitations: Protecting accessresource owner toresourcesproduce a grant token isboth an important security as well as privacy feature. End users and enterprise customers donotwant to givefeasible. The intention is that the resource owner would instead pre-arrange authorization with the AS, based on the client's own credentials. The client can the (without manual intervention) obtain accesstotokens from thedata collected by their IoT device or to functions it may offer to third parties. SinceAS. Introspection: This framework RECOMMENDS theclassical approachuse ofrequesting permissions from end users viaaccess token introspection in cases where the client is constrained in arich user interface doesway that it can notwork in many IoT deployment scenarios these functions need toeasily obtain new access tokens (i.e. it has connectivity issues that prevent it from communicating with the AS). In that case this framework RECOMMENDS the use of a long-term token, that could bedelegateda simple reference. The RS is assumed touser controlled devices that are better suitable for such tasks, such as smart phones and tablets. Communication Constraints: In certain constrained settings an IoT device may notbe able to communicate witha given device at all times. Devices may be sleeping, or just disconnected fromtheInternet because of general lack of connectivityAS, and can therefore perform introspection, inthe area, for cost reasons, or for security reasons, e.g.order toavoid an entry point for Denial-of- Service attacks.learn the claims associated with the token reference. Thecommunication interactions this framework builds upon (as shown graphically in Figure 1) may be accomplished using a variety of different protocols, and not all partsadvantage of such an approach is that themessage flow are used in all applications due toresource owner can change thecommunication constraints. While we envision deploymentsclaims associated tomake use of CoAP we explicitly wantthe token reference without having tosupport HTTP, HTTP/2be in contact with the client, thus granting orspecific protocols, such as Bluetooth Smart communication, whichrevoking access rights. Client Token: In cases where the client is constrained and does notnecessarilyhave connectivity to the AS, and furthermore does not have a previous security relation to the RS that it needs to communicate with, this framework proposes the useIP.of "client tokens". A client token is a data object obtained from the AS by the RS, during access token introspection. Thelatter raisesRS passes theneedclient token on to the client. It contains information that allows the client to perform the proof of possession forapplication layer security overits access token and to authenticate thevarious interfaces.RS (e.g. with it's public key). Appendix B. Roles and Responsibilities Resource Owner * Make sure that the RS is registered at the AS. This includes making known to the AS which profiles, token_types, scopes, and key types (symmetric/asymmetric) the RS supports. Also making it known to the AS which audience(s) the RS identifies itself with. * Make sure that clients can discover the ASwhichthat is in charge of the RS. * If the client-credentials grant is used, make sure that the AS has the necessary, up-to-date, access control policies for the RS. Requesting Party * Make sure that the client is provisioned the necessary credentials to authenticate to the AS. * Make sure that the client is configured to follow the security requirements of the RequestingParty,Party when issuing requests(e.g.(e.g., minimum communication security requirements, trust anchors). * Register the client at the AS. This includes making known to the AS which profiles, token_types, and key types (symmetric/ asymmetric) the client. Authorization Server * Register the RS and manage corresponding security contexts. * Register clients andincludingauthentication credentials. * Allow Resource Owners to configure and update access control policies related to their registeredRS'RSs. * Expose the/tokentoken endpoint to allow clients to request tokens. * Authenticate clients that wish to request a token. * Process a token requestagainstusing the authorization policies configured for the RS. * Optionally: Expose the/introspectionintrospection endpoint that allows RS's to submit token introspection requests. * If providing an introspection endpoint: AuthenticateRS'sRSs that wish to get an introspection response. * If providing an introspection endpoint: Process token introspection requests. * Optionally: Handle token revocation. * Optionally: Provide discovery metadta. See [I-D.ietf-oauth-discovery] Client * Discover the AS in charge of the RS that is to be targeted with a request. * Submit the token request(A).(see step (A) of Figure 1). + Authenticatetowardsto the AS. + Optionally (if not pre-configured): Specify which RS, which resource(s), and which action(s) the request(s) will target. + If raw publickeykeys (rpk) orcertificate iscertificates are used, make sure the AS has the right rpk or certificate for this client. * Process the access token and RS Information (see step (B) of Figure 1). + Check that the RS Information provides the necessary security parameters(e.g.(e.g., PoP key, information on communication security protocols supported by the RS). * Send the token and request to the RS (see step (C) of Figure 1). + Authenticate towards the RS (this could coincide with the proof of possession process). + Transmit the token as specified by the AS (default is to the/authz-infoauthz-info endpoint, alternative options are specified by profiles). + Perform the proof-of-possession procedure as specified by the profile in use (this may already have been taken care of through the authentication procedure). * Process the RS response (see step (F)requirementsof Figure 1) of theRequesting Party, when issuing requests (e.g. minimum communication security requirements, trust anchors). * Register the client at the AS.RS. Resource Server * Expose a way to submit access tokens. By default this is the/authz-infoauthz-info endpoint. * Process an access token. + Verify the token is fromthe righta recognized AS. + Verify that the token applies to this RS. + Check that the token has not expired (if the token provides expiration information). + Check the token's integrity. + Store the token so that it can be retrieved in the context of a matching request. * Process a request. + Set up communication security with the client. + Authenticate the client. + Match the client against existing tokens. + Check that tokens belonging to the client actually authorize the requested action. + Optionally: Check that the matching tokens are still valid, using introspection (if this is possible.) * Send a response following the agreed upon communication security. Appendix C. Requirements on Profiles This section lists the requirements on profiles of this framework, for the convenience ofaprofiledesigner. o Optionally Specify the discovery process of how the client finds the right AS for an RS it wants to send a request to. Section 4designers. o Specify the communication protocol the client and RS the must use(e.g.(e.g., CoAP). Section 5 and Section5.5.4.45.6.4.4 o Specify the security protocol the client and RS must use to protect their communication(e.g.(e.g., OSCOAP or DTLS over CoAP). This must provideencryption andencryption, integrity and replay protection. Section5.5.4.45.6.4.4 o Specify how the client and the RS mutually authenticate. Section 4 o Specify the Content-format of the protocol messages(e.g.(e.g., "application/cbor" or "application/cose+cbor"). Section 4 o Specify the proof-of-possession protocol(s) and how to select one, if several are available. Also specify which key types(e.g.(e.g., symmetric/asymmetric) are supported by a specific proof-of- possession protocol. Section5.5.4.35.6.4.3 o Specify a unique profile identifier. Section5.5.4.45.6.4.4 oOptionally specify how the RS talks toIf introspection is supported: Specify theAScommunication and security protocol for introspection.Section5.65.7 oOptionally specify how the client talks toSpecify theAScommunication and security protocol forrequesting a token.interactions between client and AS. Section5.55.6 o Specify how/if the/authz-infoauthz-info endpoint is protected. Section5.7.15.8.1 o Optionally define other methods of token transport than the/authz-infoauthz- info endpoint. Section5.7.15.8.1 Appendix D. Assumptions on AS knowledge about C and RS This section lists the assumptions on what an AS should know about a client and a RS in order to be able to respond to requests to the/tokentoken and/introspectintrospection endpoints. How this information is established is out of scope for this document. o The identifier of the client or RS. o The profiles that the client or RS supports. o The scopes that the RS supports. o The audiences that the RS identifies with. o The key types(e.g.(e.g., pre-shared symmetric key, raw public key, key length, other key parameters) that the client or RS supports. o The types of access tokens the RS supports(e.g.(e.g., CWT). o If the RS supports CWTs, the COSE parameters for the crypto wrapper(e.g.(e.g., algorithm, key-wrap algorithm, key-length). o The expiration time for access tokens issued to this RS (unless the RS accepts a default time chosen by the AS). o The symmetric key shared between client or RS and AS (if any). o The raw public key of the client or RS (if any). Appendix E. Deployment Examples There is a large variety of IoT deployments, as is indicated in Appendix A, and this section highlights a few common variants. This section is not normative but illustrates how the framework can be applied. For each of the deploymentvariantsvariants, there are a number of possible security setups between clients, resource servers and authorization servers. The main focus in the following subsections is on how authorization of a client request for a resource hosted by a RS is performed. This requires thethesecurity of the requests and responses between the clients and the RS to consider. Note: CBOR diagnostic notation is used for examples of requests and responses. E.1. Local Token Validation In thisscenario we considerscenario, the case where the resource server isoffline, i.e.offline is considered, i.e., it is not connected to the AS at the time of the access request. This access procedure involves steps A, B, C, and F of Figure 1. Since the resource server must be able to verify the access token locally, self-contained access tokens must be used. This example shows the interactions between a client, the authorization server and a temperature sensor acting as a resource server. Message exchanges A and B are shown in Figure18.17. A: The client first generates a public-private key pair used for communication security with the RS. The client sends the POST request to/tokenthe token endpoint at the AS. The security of this request can be transport or applicationlayer, itlayer. It is up the the communication security profile to define. In the example transport layer identification of the AS is done and the client identifies with client_id and client_secret as in classic OAuth. The request contains the public key of the client and the Audience parameter set to "tempSensorInLivingRoom", a value that the temperature sensor identifies itself with. The AS evaluates the request and authorizes the client to access the resource. B: The AS responds with a PoP access token and RS Information. The PoP access token contains the public key of the client, and the RS Information contains the public key of the RS. For communication security this example uses DTLS RawPublicKey between the client and the RS. The issued token will have a short validity time,i.e. 'exp'i.e., "exp" close to'iat',"iat", to protect the RS from replay attacks. The token includes the claim such as "scope" with the authorized access that an owner of the temperature device can enjoy. In this example, the'scope'"scope" claim, issued by the AS, informs the RS that the owner of the token, that can prove the possession of a key is authorized to make a GET request against the /temperature resource and a POST request on the /firmware resource. Note that the syntax and semantics of the scope claim are application specific. Note: In this examplewe assumeit is assumed that the client knows what resource it wants to access, and is therefore able to request specific audience and scope claims for the access token. Authorization Client Server | | |<=======>| DTLS Connection Establishment | | to identify the AS | | A: +-------->| Header: POST (Code=0.02) | POST | Uri-Path:"token" | | Content-Type: application/cbor | | Payload: <Request-Payload> | | B: |<--------+ Header: 2.05 Content | 2.05 | Content-Type: application/cbor | | Payload: <Response-Payload> | | Figure18:17: Token Request and Response Using Client Credentials. The information contained in the Request-Payload and the Response- Payload is shown in Figure19.18. Note thatwe assumeaDTLS-basedtransport layer security based communication security profileforis used in this example, therefore the Content-Type is "application/cbor". Request-Payload : { "grant_type" : "client_credentials", "aud" : "tempSensorInLivingRoom", "client_id" : "myclient", "client_secret" : "qwerty" } Response-Payload : { "access_token" : b64'SlAV32hkKG ...', "token_type" : "pop", "csp" : "DTLS","cnf""rs_cnf" : { "COSE_Key" : { "kid" : b64'c29tZSBwdWJsaWMga2V5IGlk', "kty" : "EC", "crv" : "P-256", "x" : b64'MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4', "y" : b64'4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM' } } } Figure19:18: Request and Response Payload Details. The content of the access token is shown in Figure20.19. { "aud" : "tempSensorInLivingRoom", "iat" : "1360189224", "exp" : "1360289224", "scope" : "temperature_g firmware_p", "cnf" : {"jwk""COSE_Key" : { "kid" : b64'1Bg8vub9tLe1gHMzV76e8', "kty" : "EC", "crv" : "P-256", "x" : b64'f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU', "y" : b64'x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0' } } } Figure20:19: Access Token including Public Key of the Client. Messages C and F are shown in Figure2120 - Figure22.21. C: The client then sends the PoP access token to the/authz-infoauthz-info endpoint at the RS. This is a plain CoAP request,i.e.i.e., no transport or application layer security between client and RS, since the token is integrity protected between the AS and RS. The RS verifies that the PoP access token was created by a known and trusted AS, is valid, and responds to the client. The RS caches the security context together with authorization information about this client contained in the PoP access token. Resource Client Server | | C: +-------->| Header: POST (Code=0.02) | POST | Uri-Path:"authz-info" | | Payload: SlAV32hkKG ... | | |<--------+ Header: 2.04 Changed | 2.04 | | | Figure21:20: Access Token provisioning to RS The client and the RS runs the DTLS handshake using the raw public keys established in step B and C. The client sends the CoAP request GET to /temperature on RS over DTLS. The RS verifies that the request is authorized, based on previously established security context. F: The RS responds with a resource representation over DTLS. Resource Client Server | | |<=======>| DTLS Connection Establishment | | using Raw Public Keys | | +-------->| Header: GET (Code=0.01) | GET | Uri-Path: "temperature" | | | | | | F: |<--------+ Header: 2.05 Content | 2.05 | Payload: <sensor value> | | Figure22:21: Resource Request and Response protected by DTLS. E.2. Introspection Aided Token Validation In this deployment scenariowe assumeit is assumed that a client is not able to access the AS at the time of the accessrequest. Sincerequest, whereas the RSis, however,is assumed to be connected to the back-endinfrastructure itinfrastructure. Thus the RS can make use of token introspection. This access procedure involves steps A-F of Figure 1, but assumes steps A and B have been carried out during a phase when the client had connectivity to AS. Since the client is assumed to be offline, at least for a certain period of time, a pre-provisioned access token has to be long-lived. Since the client is constrained, the token will not be self contained (i.e. not a CWT) but instead just a reference. The resource servermay useuses itsonlineconnectivity tovalidatelearn about the claims assoicated to the access tokenwith the authorization server,by using introspection, which is shown in the example below. In the example interactions between an offline client (key fob), a RS (online lock), and an AS is shown.We assumeIt is assumed that there is a provisioning step where the client has access to the AS. This corresponds to message exchanges A and B which are shown in Figure23.22. Authorization consent from the resource owner can be pre-configured, but it can also be provided via an interactive flow with the resource owner. An example of this for the key fob case could be that the resource owner has a connected car, he buys a generic key that he wants to use with the car. To authorize the key fob he connects it to his computer that then provides the UI for the device. After that OAuth 2.0 implicit flow can used to authorize the key for his car at the the car manufacturers AS. Note: In this example the client does not know the exact door it will be used to access since the token request is not send at the time of access. So the scope and audience parametersisare set quite wide to start with and new values different form the original once can be returned from introspection later on. A: The client sends the request using POST to/tokenthe token endpoint at AS. The request contains the Audience parameter set to "PACS1337" (PACS, Physical Access System), a value the that the online door in question identifies itself with. The AS generates an access token asonan opaque string, which it can match to the specific client, a targeted audience and a symmetric key. The security is provided by identifying the AS on transport layer using a pre shared security context (psk, rpk or certificate) and then the client is identified using client_id and client_secret as in classicOAuthOAuth. B: The AS responds with the an access token and RS Information, the latter containing a symmetric key. Communication security between C and RS will be DTLS and PreSharedKey. The PoP keybeingis used as the PreSharedKey. Authorization Client Server | | | | A: +-------->| Header: POST (Code=0.02) | POST | Uri-Path:"token" | | Content-Type: application/cbor | | Payload: <Request-Payload> | | B: |<--------+ Header: 2.05 Content | | Content-Type: application/cbor | 2.05 | Payload: <Response-Payload> | | Figure23:22: Token Request and Response using Client Credentials. The information contained in the Request-Payload and the Response- Payload is shown in Figure24.23. Request-Payload: { "grant_type" : "client_credentials", "aud" : "lockOfDoor4711", "client_id" : "keyfob", "client_secret" : "qwerty" } Response-Payload: { "access_token" : b64'SlAV32hkKG ...' "token_type" : "pop", "csp" : "DTLS", "cnf" : { "COSE_Key" : { "kid" : b64'c29tZSBwdWJsaWMga2V5IGlk', "kty" : "oct", "alg" : "HS256", "k": b64'ZoRSOrFzN_FzUA5XKMYoVHyzff5oRJxl-IXRtztJ6uE' } } } Figure24:23: Request and Response Payload for C offline The access token in this case is just an opaque string referencing the authorization information at the AS. C: Next, the client POSTs the access token to the/authz-infoauthz-info endpoint in the RS. This is a plain CoAP request,i.e.i.e., no DTLS between client and RS. Since the token is an opaque string, the RS cannot verify it on its own, and thus defers to respond the client with a status code until after step E. D: The RS forwards the token to the/introspectintrospection endpoint on the AS. Introspection assumes a secure connection between the AS and the RS,e.g.e.g., using transport of application layer security. In the example AS is identified using pre shared security context (psk, rpk or certificate) while RS is acting as client and is identified with client_id and client_secret. E: The AS provides the introspection response containing parameters about the token. This includes the confirmation key (cnf) parameter that allows the RS to verify the client's proof of possession in step F. After receiving message E, the RS responds to the client's POST in step C with the CoAP response code 2.01 (Created). Resource Client Server | | C: +-------->| Header: POST (T=CON, Code=0.02) | POST | Uri-Path:"authz-info" | | Content-Type: "application/cbor" | | Payload: b64'SlAV32hkKG ...'' | | | | Authorization | | Server | | | | D: +--------->| Header: POST (Code=0.02) | | POST | Uri-Path: "introspect" | | | Content-Type: "application/cbor" | | | Payload: <Request-Payload> | | | | E: |<---------+ Header: 2.05 Content | | 2.05 | Content-Type: "application/cbor" | | | Payload: <Response-Payload> | | | | | |<--------+ Header: 2.01 Created | 2.01 | | | Figure25:24: Token Introspection for C offline The information contained in the Request-Payload and the Response- Payload is shown in Figure26.25. Request-Payload: { "token" : b64'SlAV32hkKG...', "client_id" : "FrontDoor", "client_secret" : "ytrewq" } Response-Payload: { "active" : true, "aud" : "lockOfDoor4711", "scope" : "open, close", "iat" : 1311280970, "cnf" : { "kid" : b64'JDLUhTMjU2IiwiY3R5Ijoi ...' } } Figure26:25: Request and Response Payload for Introspection The client uses the symmetric PoP key to establish a DTLS PreSharedKey secure connection to the RS. The CoAP request PUT is sent to the uri-path /state onRSthe RS, changing the state of the door to locked. F: The RS responds with a appropriate over the secure DTLS channel. Resource Client Server | | |<=======>| DTLS Connection Establishment | | using Pre Shared Key | | +-------->| Header: PUT (Code=0.03) | PUT | Uri-Path: "state" | | Payload: <new state for the lock> | | F: |<--------+ Header: 2.04 Changed | 2.04 | Payload: <new state for the lock> | | Figure27:26: Resource request and response protected by OSCOAP Appendix F. Document Updates F.1. Version -08 to -09 o Moved AS discovery from the DTLS profile to the framework, see Section 5.1. o Made the use of CBOR mandatory. If you use JSON you can use vanilla OAuth. o Made it mandatory for profiles to specify C-AS security and RS-AS security (the latter only if introspection is supported). o Made the use of CBOR abbreviations mandatory. o Added text to clarify the use of token references as an alternative to CWTs. o Added text to clarify that introspection must not be delayed, in case the RS has to return a client token. o Added security considerations about leakage through unprotected AS discovery information, combining profiles and leakage through error responses. o Added privacy considerations about leakage through unprotected AS discovery. o Added text that clarifies that introspection is optional. o Made profile parameter optional since it can be implicit. o Clarified that CoAP is not mandatory and other protocols can be used. o Clarified the design justification for specific features of the framework in appendix A. o Clarified appendix E.2. F.2. Version -07 to -08 o Removed specification of the "cnf" claim for CBOR/COSE, and replaced with references to [I-D.jones-ace-cwt-proof-of-possession] F.3. Version -06 to -07 o Various clarifications added. o Fixed erroneous author email.F.2.F.4. Version -05 to -06 o Moved sections that define the ACE framework into a subsection of the framework Section 5. o Split section on client credentials and grant into two separate sections, Section5.1,5.2, and Section5.2.5.3. o Added Section5.35.4 on AS authentication. o Added Section5.45.5 on theAuthorizeAuthorization endpoint.F.3.F.5. Version -04 to -05 o Added RFC 2119 language to the specification of the required behavior of profile specifications. o Added Section5.25.3 on the relation to the OAuth2 grant types. o Added CBOR abbreviations for error and the error codes defined in OAuth2. o Added clarification about token expiration and long-running requests in Section5.7.25.8.2 o Added security considerations about tokens with symmetric pop keys valid for more than one RS. o Added privacy considerations section. o Added IANA registry mapping the confirmation types from RFC 7800 to equivalent COSE types. o Added appendix D, describing assumptions about what the AS knows about the client and the RS.F.4.F.6. Version -03 to -04 o Added a description of the terms "framework" and "profiles" as used in this document. o Clarified protection of access tokens in section 3.1. o Clarified uses of the'cnf'"cnf" parameter in section 6.4.5. o Clarified intended use of Client Token in section 7.4.F.5.F.7. Version -02 to -03 o Removed references to draft-ietf-oauth-pop-key-distribution since the status of this draft is unclear. o Copied and adapted security considerations from draft-ietf-oauth- pop-key-distribution. o Renamed "client information" to "RS information" since it is information about the RS. o Clarified the requirements on profiles of this framework. o Clarified the token endpoint protocol and removed negotiation of'profile'"profile" and'alg'"alg" (section 6). o Renumbered the abbreviations for claims and parameters to get a consistent numbering across different endpoints. o Clarified the introspection endpoint. o Renamed token, introspection and authz-info to'endpoint'"endpoint" instead of'resource'"resource" to mirror the OAuth 2.0 terminology. o Updated the examples in the appendices.F.6.F.8. Version -01 to -02 o Restructured to remove communication security parts. These shall now be defined in profiles. o Restructured section 5 to create new sections on the OAuth endpoints/token, /introspecttoken, introspection and/authz-info.authz-info. o Pulled in material from draft-ietf-oauth-pop-key-distribution in order to define proof-of-possession key distribution. o Introduced the'cnf'"cnf" parameter as defined in RFC7800 to reference or transport keys used for proof of possession. o Introduced the'client-token'"client-token" to transport client information from the AS to the client via the RS in conjunction with introspection. o Expanded the IANA section to define parameters for token request, introspection and CWT claims. o Moved deployment scenarios to the appendix as examples.F.7.F.9. Version -00 to -01 o Changed 5.1. from "Communication Security Protocol" to "Client Information". o Major rewrite of 5.1 to clarify the information exchanged between C and AS in the PoP access token request profile for IoT. * Allow the client to indicate preferences for the communication security protocol. * Defined the term "Client Information" for the additional information returned to the client in addition to the access token. * Require that the messages between AS and client are secured, either with (D)TLS or with COSE_Encrypted wrappers. * Removed dependency on OSCOAP and added generic text about object security instead. * Defined the "rpk" parameter in the client information to transmit the raw public key of the RS from AS to client. * (D)TLS MUST use the PoP key in the handshake (either as PSK or as client RPK with client authentication). * Defined the use of x5c, x5t and x5tS256 parameters when a client certificate is used for proof of possession. * Defined "tktn" parameter for signaling for how to transfer the access token. o Added 5.2. the CoAP Access-Token option for transferring access tokens in messages that do not have payload. o 5.3.2. Defined success and error responses from the RS when receiving an access token. o 5.6.:Added section giving guidance on how to handle token expiration in the absence of reliable time. o Appendix B Added list of roles and responsibilities for C, AS and RS. Authors' Addresses Ludwig Seitz RISE SICS Scheelevaegen 17 Lund 223 70SWEDENSweden Email: ludwig.seitz@ri.se Goeran Selander Ericsson Faroegatan 6 Kista 164 80SWEDENSweden Email: goran.selander@ericsson.com Erik Wahlstroem (no affiliation) Sweden Email: erik@wahlstromtekniska.se Samuel Erdtman Spotify AB Birger Jarlsgatan 61, 4tr Stockholm 113 56 Sweden Email: erdtman@spotify.com Hannes Tschofenig ARM Ltd. Hall in Tirol 6060 Austria Email: Hannes.Tschofenig@arm.com