Network Working Group J. Damas Internet-Draft ISC Expires:November 18,December 27, 2006 F. Neves Registro.brMay 17,June 25, 2006 Preventing Use of Nameservers in Reflector Attacksdraft-ietf-dnsop-reflectors-are-evil-00.txtdraft-ietf-dnsop-reflectors-are-evil-01.txt Status of this Memo By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. This Internet-Draft will expire onNovember 18,December 27, 2006. Copyright Notice Copyright (C) The Internet Society (2006). Abstract This document describes the use of default configured recursivename serversnameservers as reflectors on DOS attacks. Recommended configuration as measures to mitigate the attack are given. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Problem Description . . . . . . . . . . . . . . . . . . . . . . 3 3. Recommended Configuration . . . . . . . . . . . . . . . . . . . 4 4. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 5 5. Security Considerations . . . . . . . . . . . . . . . . . . . . 55.6. References . . . . . . . . . . . . . . . . . . . . . . . . . .5 5.1.6 6.1. Normative References . . . . . . . . . . . . . . . . . . .5 5.2.6 6.2. Informative References . . . . . . . . . . . . . . . . . .56 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . .67 Intellectual Property and Copyright Statements . . . . . . . . . .78 1. Introduction Recently, DNS [RFC1034] has been named as a major factor in the generation of massive amounts of network traffic used in Denial of Service (DoS) attacks. These attacks, called reflector attacks,whileare notbeingdue to any particular flaw in the design of the DNS or its implementations, asides perhaps the fact that DNS relies heavily on UDP, the easy abuse of which is at the source of the problem. They have preferentially used DNS due to common default configurations that allow for easy use of public recursivename serversnameservers that make use of such a default configuration. In addition, due to the small query-large response potential of the DNS system it is easy to yield great amplification of the source traffic as reflected traffic towards the victims. DNS authority servers which do not provide recursion to clients can also be used as amplifiers; however, the amplification potential is greatly reduced when authority servers are used. It is also not practical to restrict access to authority servers to a subset of the Internet, since their normal operation relies on them being able to serve a wide audience, and hence the opportunities to mitigate the scale of an attack by modifying authority server configurations are limited. This document's recommendations are concerned with recursive nameservers only. In this document we describe the characteristics of the attack and recommend DNS server configurations that specifically alleviate theproblem,problem described, while pointing to the only truly realsolution tosolution, theproblem, the wide- scalewide-scale deployment ofIngress Filteringingress filtering to prevent use of spoofed IP addresses [BCP38]. 2. Problem Description Becauseof the fact thatmostof theDNS traffic is stateless bydesigndesign, an attacker couldmake use of the following scenario tostart aDOSDoS attackusing DNS packets:in the following way: 1. The attacker starts by configuring a record (LRECORD) onan undistinctany zone he has access to (AZONE), normally with large RDATA and TTL. 2. Taking advantage of clients (ZCLIENTS) on non-BCP38 networks, the attacker then crafts a query using the source address of their target victim and sends it to aPublic Recursive Name Serverpublic recursive nameserver (PRNS). 3.TheEach PRNS proceeds with the resolution, caches the LRECORD and finally sends it to the target. After this firstpacket,lookup, access to the authoritativename serversnameservers for AZONE is normally no longer necessary. The LRECORD will remain cached for the duration of the TTL at the PRNS even if the AZONE is corrected. 4. Cleanup of the AZONE might, depending on the implementation used in the PRNS, afford a way to clean the cached LRECORD from the PRNS. This would possibly involve queries luring the PRNS to lookup information for the same name that is being used in the amplification. Because the characteristics of the attack normallyuseinvolve a low volume of packetsonamongst all the kinds of actors besides the victim (AZONE, ZCLIENTS, PRNS), it's unlikely any one of them would notice their involvement based on traffic pattern changes. Taking advantage of PRNS that support EDNS0 [RFC2671], the amplification factor (response size / query size) could be around 80. With this amplification factor a relatively small army of ZCLIENTS and PRNS could generate gigabits of traffic towards thetargettedvictim.ThisEven if this attach is only really possible due to non-deployment of BCP 38, this amplification attack ispossibleeasier to leverage because for historical reasons, out of times when the Internet was a muchcloser-knitcloser- knit community, somename servernameserver implementations have been made available with default configurations that when used for recursivename serversnameservers made the server accessible to all hosts on the Internet. For years this was a convenient and helpful configuration, enabling wider availability of services. Asthe subject ofthis documenttriesaims to make apparent, it is now much better to be conscious of ones ownname servernameserver services and focus the delivery of services on the intended audience of those services,may thembe they aUniversity Campus,university campus, anEnterpriseenterprise or an ISP's customers. The authors also want to draw the attention of small network operators and private server managers who decide to operatename serversnameservers with the aim ofoptimizingoptimising their DNS service, as these are more likely to use default configurations as shipped by implementors. 3. Recommended Configuration From the description of the problem in the previous section it follows that the solution to this sort of attacks is the widedeployingdeployment of ingress filtering [BCP38] in routers to prevent use of address spoofing as a viable course of action to elicit the attacks. Nonetheless, the fact remains that DNS servers acting as open recursive servers provide an easy means to obtain great rates of amplification for attack traffic, requiring only a small amount of traffic from the attack sources to generate a vast amount of traffic towards the victim. The authors also want to note that with the increasing length of authoritative DNS responses derived from deployment of DNSSEC and NAPTR as used in ENUM services, authoritative servers will eventually be more useful as actors in this sort of amplification attack, stressing even more the need for deployment of BCP 38. In this section we describe the Current Best Practice for operating recursivename servers.nameservers. Following these recommendations would reduce the chances of having a given recursivename servernameserver be used for the generation of an amplification attack. The generic recommendation toname servernameserver operators is to use the means provided by the implementation of choice to provide recursive name lookup service only to the intended clients. Client authentication can be usually done in several ways: o IP based authentication. Use the IP address of the sending host and filter them through and Access Control List (ACL) to service only the intended clients. o Use TSIG[RFC2845]signed[RFC2845] signed queries to authenticate the clients. This is a less error prone method, which allows server operators to provide service to clients who change IP address frequently(eg.(e.g. roaming clients). The current drawback of this method is that very few stub resolver implementations support TSIG signing of outgoing queries. The effective use of this method implies in most cases running a local instance of a caching nameserver or forwarder that will be able to TSIG sign the queries and send them on to the recursivename servernameserver of choice. In nameservers that do not need to be providing recursive service, for instance servers that are meant to be authoritative only, turn recursion off completely. In general, it is a good idea to keep recursive and authoritative services separate as much as practical. This, of course, depends on local circumstances. 4. Acknowledgments Joe Abley, Andrew Sullivan 5. Security Considerations This document does not create any new security issues for the DNS protocol. It's not excessive to repeat that, although recommended configurations described in this document could alleviate the problem, the only solution to all kinds of source address spoofing problems is the wide-scale deployment of Ingress Filtering to prevent use of spoofed IP addresses [BCP38].5.6. References5.1.6.1. Normative References [RFC1034] Mockapetris, P., "Domain names - concepts and facilities", STD 13, RFC 1034, November 1987. [RFC2671] Vixie, P., "Extension Mechanisms for DNS (EDNS0)", RFC 2671, August 1999. [RFC2845] Vixie, P., Gudmundsson, O., Eastlake, D., and B. Wellington, "Secret Key Transaction Authentication for DNS (TSIG)", RFC 2845, May 2000.5.2.6.2. Informative References [BCP38] Ferguson, P. and D. Senie, "Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing", BCP 38, RFC 2827, May 2000. Authors' Addresses Joao Damas Internet Systems Consortium, Inc. 950 Charter Street Redwood City, CA 94063 US Phone: +1 650 423 1300 Email: Joao_Damas@isc.org URI: http://www.isc.org/ Frederico A. C. Neves NIC.br / Registro.br Av. das Nacoes Unidas, 11541, 7 Sao Paulo, SP 04578-000 BR Phone: +55 11 5509 3511 Email: fneves@registro.br URI: http://registro.br/ Intellectual Property Statement The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org. Disclaimer of Validity This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Copyright Statement Copyright (C) The Internet Society (2006). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. Acknowledgment Funding for the RFC Editor function is currently provided by the Internet Society.