--- 1/draft-ietf-ecrit-car-crash-08.txt 2016-08-01 19:19:09.160298254 -0700 +++ 2/draft-ietf-ecrit-car-crash-09.txt 2016-08-01 19:19:09.244300383 -0700 @@ -1,69 +1,71 @@ ECRIT R. Gellens -Internet-Draft Consultant +Internet-Draft Core Technology Consulting Intended status: Standards Track B. Rosen -Expires: January 7, 2017 NeuStar, Inc. +Expires: February 2, 2017 NeuStar, Inc. H. Tschofenig Individual - July 6, 2016 + August 1, 2016 Next-Generation Vehicle-Initiated Emergency Calls - draft-ietf-ecrit-car-crash-08.txt + draft-ietf-ecrit-car-crash-09.txt Abstract This document describes how to use IP-based emergency services mechanisms to support the next generation of emergency calls placed by vehicles (automatically in the event of a crash or serious incident, or manually invoked by a vehicle occupant) and conveying vehicle, sensor, and location data related to the crash or incident. Such calls are often referred to as "Automatic Crash Notification" (ACN), or "Advanced Automatic Crash Notification" (AACN), even in the case of manual trigger. The "Advanced" qualifier refers to the ability to carry a richer set of data. - This document also registers a MIME Content Type and an Emergency - Call Additional Data Block for the vehicle, sensor, and location data + This document also registers a MIME Content Type and Emergency Call + Additional Data Block for the vehicle, sensor, and location data (often referred to as "crash data" even though there is not necessarily a crash). An external specification for the data format, contents, and structure are referenced in this document. This document reuses the technical aspects of next-generation pan- European eCall (a mandated and standardized system for emergency calls by in-vehicle systems within Europe and other regions). However, this document specifies a different set of vehicle (crash) data, specifically, the Vehicle Emergency Data Set (VEDS) rather than the eCall Minimum Set of Data (MSD). This document is an extension of the eCall document, with the primary differences being that this - document makes the MSD data set optional and VEDS mandatory, and - extends the eCall metadata/control object to permit greater - functionality. This document also describes legacy (circuit- + document makes the MSD data set optional and VEDS mandatory, and adds + attribute values to the eCall metadata/control object to permit + greater functionality. This document registers a new INFO package + (identical to that registered for eCall but with the addition of the + VEDS MIME type). This document also describes legacy (circuit- switched) ACN systems and their migration to next-generation emergency calling, to provide background information and context. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." - This Internet-Draft will expire on January 7, 2017. + This Internet-Draft will expire on February 2, 2017. Copyright Notice Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents @@ -71,64 +73,63 @@ to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4 3. Document Scope . . . . . . . . . . . . . . . . . . . . . . . 8 - 4. Overview of Legacy Deployment Models . . . . . . . . . . . . 9 + 4. Overview of Legacy Deployment Models . . . . . . . . . . . . 8 5. Migration to Next-Generation . . . . . . . . . . . . . . . . 10 - 6. Call Setup . . . . . . . . . . . . . . . . . . . . . . . . . 13 - 6.1. Call Routing . . . . . . . . . . . . . . . . . . . . . . 15 - 7. eCall Metadata/Control Extensions . . . . . . . . . . . . . . 16 - 7.1. New values for the 'action' attribute' . . . . . . . . . 17 - 7.2. element extensions . . . . . . . . . . . . . . . . 17 - 7.3. The element . . . . . . . . . . . . . . . 19 - 7.4. element extensions . . . . . . . . . . . . . . 21 - 8. Test Calls . . . . . . . . . . . . . . . . . . . . . . . . . 23 - 9. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 - 10. Security Considerations . . . . . . . . . . . . . . . . . . . 30 - 11. Privacy Considerations . . . . . . . . . . . . . . . . . . . 30 - 12. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 30 - 12.1. MIME Content-type Registration for - 'application/EmergencyCall.VEDS+xml' . . . . . . . . . . 31 - - 12.2. Registration of the 'VEDS' entry in the Emergency Call - Additional Data registry . . . . . . . . . . . . . . . . 32 - 12.3. Additions to the eCall Control Extension Registry . . . 32 - 12.4. eCall Action Extensions . . . . . . . . . . . . . . . . 34 - 12.5. eCall Static Message Registry . . . . . . . . . . . . . 34 - 12.6. eCall Reason Registry . . . . . . . . . . . . . . . . . 35 - 12.7. eCall Lamp ID Registry . . . . . . . . . . . . . . . . . 36 - 12.8. eCall Camera ID Registry . . . . . . . . . . . . . . . . 37 - 13. eCall Control Block Schema . . . . . . . . . . . . . . . . . 38 - 14. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 41 - 15. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 41 - 16. Changes from Previous Versions . . . . . . . . . . . . . . . 41 - 16.1. Changes from draft-ietf-07 to draft-ietf-08 . . . . . . 41 - 16.2. Changes from draft-ietf-06 to draft-ietf-07 . . . . . . 42 - 16.3. Changes from draft-ietf-05 to draft-ietf-06 . . . . . . 42 - 16.4. Changes from draft-ietf-04 to draft-ietf-05 . . . . . . 42 - 16.5. Changes from draft-ietf-03 to draft-ietf-04 . . . . . . 42 - 16.6. Changes from draft-ietf-02 to draft-ietf-03 . . . . . . 42 - 16.7. Changes from draft-ietf-01 to draft-ietf-02 . . . . . . 42 - 16.8. Changes from draft-ietf-00 to draft-ietf-01 . . . . . . 42 - 16.9. Changes from draft-gellens-02 to draft-ietf-00 . . . . . 43 - 16.10. Changes from draft-gellens-01 to -02 . . . . . . . . . . 43 - 16.11. Changes from draft-gellens-00 to -01 . . . . . . . . . . 43 - 17. References . . . . . . . . . . . . . . . . . . . . . . . . . 43 - 17.1. Normative References . . . . . . . . . . . . . . . . . . 43 - 17.2. Informative references . . . . . . . . . . . . . . . . . 44 - Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 45 + 6. Data Transport . . . . . . . . . . . . . . . . . . . . . . . 13 + 7. Call Setup . . . . . . . . . . . . . . . . . . . . . . . . . 14 + 8. Call Routing . . . . . . . . . . . . . . . . . . . . . . . . 15 + 9. New Metadata/Control Values . . . . . . . . . . . . . . . . . 16 + 9.1. New values for the 'action' attribute' . . . . . . . . . 17 + 9.2. Request Example . . . . . . . . . . . . . . . . . . . . . 18 + 9.3. The element . . . . . . . . . . . . . . . . . . . . 18 + 9.4. The element . . . . . . . . . . . . . . . 19 + 10. Test Calls . . . . . . . . . . . . . . . . . . . . . . . . . 20 + 11. The emergencyCallData.eCall.VEDS INFO package . . . . . . . . 21 + 11.1. INFO Package Requirements . . . . . . . . . . . . . . . 22 + 12. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 + 13. Security Considerations . . . . . . . . . . . . . . . . . . . 29 + 14. Privacy Considerations . . . . . . . . . . . . . . . . . . . 29 + 15. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 30 + 15.1. MIME Content-type Registration for + 'application/EmergencyCall.VEDS+xml' . . . . . . . . . . 30 + 15.2. Registration of the 'VEDS' entry in the Emergency Call + Additional Data registry . . . . . . . . . . . . . . . . 31 + 15.3. New Action Values . . . . . . . . . . . . . . . . . . . 32 + 15.4. Static Message Registry . . . . . . . . . . . . . . . . 32 + 15.5. Lamp ID Registry . . . . . . . . . . . . . . . . . . . . 33 + 15.6. Camera ID Registry . . . . . . . . . . . . . . . . . . . 34 + 16. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 35 + 17. Changes from Previous Versions . . . . . . . . . . . . . . . 35 + 17.1. Changes from draft-ietf-08 to draft-ietf-09 . . . . . . 35 + 17.2. Changes from draft-ietf-07 to draft-ietf-08 . . . . . . 36 + 17.3. Changes from draft-ietf-06 to draft-ietf-07 . . . . . . 36 + 17.4. Changes from draft-ietf-05 to draft-ietf-06 . . . . . . 36 + 17.5. Changes from draft-ietf-04 to draft-ietf-05 . . . . . . 36 + 17.6. Changes from draft-ietf-03 to draft-ietf-04 . . . . . . 36 + 17.7. Changes from draft-ietf-02 to draft-ietf-03 . . . . . . 36 + 17.8. Changes from draft-ietf-01 to draft-ietf-02 . . . . . . 36 + 17.9. Changes from draft-ietf-00 to draft-ietf-01 . . . . . . 37 + 17.10. Changes from draft-gellens-02 to draft-ietf-00 . . . . . 37 + 17.11. Changes from draft-gellens-01 to -02 . . . . . . . . . . 37 + 17.12. Changes from draft-gellens-00 to -01 . . . . . . . . . . 37 + 18. References . . . . . . . . . . . . . . . . . . . . . . . . . 37 + 18.1. Normative References . . . . . . . . . . . . . . . . . . 37 + 18.2. Informative references . . . . . . . . . . . . . . . . . 39 + Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 39 1. Terminology The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. This document re-uses terminology defined in Section 3 of [RFC5012]. Additionally, we use the following abbreviations: @@ -164,21 +165,21 @@ by allowing emergency services to respond quickly and appropriately to the specifics of the incident, often with better location accuracy. Drivers often have a poor location awareness, especially outside of major cities, at night and when away from home (especially abroad). In the most crucial cases, the victim(s) might not be able to call because they have been injured or trapped. For more than two decades, some vehicles have been equipped with - telematics systems that, among other features, place an emergency + telematics systems which, among other features, place an emergency call automatically in the event of a crash or manually in response to an emergency call button. Such systems generally have on-board location determination systems that make use of satellite-based positioning technology, inertial sensors, gyroscopes, etc., which can provide an accurate position for the vehicle. Such built-in systems can take advantage of the benefits of being integrated into a vehicle, such as more power capacity, ability to have larger or specialized antenna, ability to be engineered to avoid or minimise degradation by vehicle glass coatings, interference from other vehicle systems, etc. Thus, the PSAP can be provided with a good @@ -201,70 +202,71 @@ As of the date of this document, currently deployed in-vehicle telematics systems are circuit-switched and lack a standards-based ability to convey crash data directly to the PSAP (generally relying on either a human advisor or an automated text-to-speech system to provide the PSAP call taker with some crash data orally, or in some cases via a proprietary mechanism). In most cases, the PSAP call taker needs to first realize that the call is related to a vehicle incident, and then listen to the data and transcribe it. Circuit- switched ACN systems are referred to here as CS-ACN. - The transition to next-generation calling in general, and emergency - calling in particular, provides an opportunity to vastly improve the - scope, breadth, reliability and usefulness of crash data during an - emergency by allowing it to be transmitted during call set-up, and to - be automatically processed by the PSAP and made available to the call - taker in an integrated, automated way, as well as provide the ability - for a PSAP call taker to request that a vehicle take certain actions, - such as flashing lights or unlocking doors. In addition, vehicle - manufacturers are provided an opportunity to take advantage of the - same standardized mechanisms for data transmission and request - processing for internal use if they wish (such as telemetry between - the vehicle and a service center for both emergency and non-emergency - uses, including location-based services, multi-media entertainment - systems, remote door unlocking, and road-side assistance - applications). + The transition to next-generation calling in general, and for + emergency calling in particular, provides an opportunity to vastly + improve the scope, breadth, reliability and usefulness of crash data + during an emergency by allowing it to be transmitted during call set- + up, and to be automatically processed by the PSAP and made available + to the call taker in an integrated, automated way, as well as provide + the ability for a PSAP call taker to request that a vehicle take + certain actions, such as flashing lights or unlocking doors. In + addition, vehicle manufacturers are provided an opportunity to take + advantage of the same standardized mechanisms for data transmission + and request processing for internal use if they wish (such as + telemetry between the vehicle and a service center for both emergency + and non-emergency uses, including location-based services, multi- + media entertainment systems, remote door unlocking, and road-side + assistance applications). Next-generation ACN provides an opportunity for such calls to be recognized and processed as such during call set-up, and routed to an equipped PSAP where the vehicle data is available to assist the call taker in assessing and responding to the situation. Next-generation (IP-based) ACN systems are referred to here as NG-ACN. - An ACN call can initiated by a vehicle occupant or automatically + An ACN call can be initiated by a vehicle occupant or automatically initiated by vehicle systems in the event of a serious incident. (The "A" in "ACN" does stand for "Automatic," but the term is broadly used to refer to the class of calls that are placed by an in-vehicle system (IVS) or Telematics Service Providers (TSP) and that carry incident-related data as well as voice.) Automatically triggered calls indicate a car crash or some other serious incident (e.g., a fire). Manually triggered calls are often reports of observed crashes or serious hazards (such as impaired drivers or roadway - debris). Depending on the design, manually triggered calls might be + debris). In some implementations, manually triggered calls might be more likely to be accidental. This document describes how the IETF mechanisms for IP-based - emergency calls, including [RFC6443] and - [I-D.ietf-ecrit-additional-data], are used to provide the realization - of next-generation ACN. + emergency calls, including [RFC6443] and [RFC7852], are used to + provide the realization of next-generation ACN. This document reuses the technical aspects of next-generation pan- European eCall (a mandated and standardized system for emergency calls by in-vehicle systems within Europe and other regions), as described in [I-D.ietf-ecrit-ecall]. However, this document specifies a different set of vehicle (crash) data, specifically, the Vehicle Emergency Data Set (VEDS) rather than the eCall Minimum Set of Data (MSD). This document is an extension of [I-D.ietf-ecrit-ecall], with the differences being that this document - makes the MSD data set optional and VEDS mandatory, and adds - extension elements, attributes, and values to the eCall metadata/ - control object defined in that document. + makes the MSD data set optional and VEDS mandatory, and adds new + attribute values to the eCall metadata/control object defined in that + document. This document also registers a new INFO package (identical + to that defined in [I-D.ietf-ecrit-ecall] with the addition of the + VEDS MIME type). The Association of Public-Safety Communications Officials (APCO) and the National Emergency Number Association (NENA) have jointly developed a standardized set of incident-related vehicle data for ACN use, called the Vehicle Emergency Data Set (VEDS) [VEDS]. Such data is often referred to as crash data although it is applicable in incidents other than crashes. VEDS provides a standard data set for the transmission, exchange, and interpretation of vehicle-related data. A standard data format @@ -281,70 +283,60 @@ injured patients [triage-2008] [triage-2011]. These guidelines are designed to help responders identify the potential existence of severe internal injuries and to make critical decisions about how and where a patient needs to be transported. This document registers the 'application/EmergencyCallData.VEDS+xml' MIME content-type, and registers the 'VEDS' entry in the Emergency Call Additional Data registry. VEDS is an XML structure (see [VEDS]) transported in SIP using the - 'application/EmergencyCallData.VEDS+xml' MIME content-type. The - 'VEDS' entry in the Emergency Call Additional Data registry is used - to construct a 'purpose' parameter value to indicate VEDS data in a - Call-Info header (as described in [I-D.ietf-ecrit-additional-data]). + 'application/EmergencyCallData.VEDS+xml' MIME content-type.. VEDS is a versatile structure that can accomodate varied needs. However, if additional sets of data are determined to be needed (e.g., in the future or in different regions), the steps to enable each data block are very briefly summarized below: o A standardized format and encoding (such as XML) is defined and published by a Standards Development Organization (SDO) o A MIME Content-Type is registered for it (typically under the 'Application' media type) with a sub-type starting with 'EmergencyCallData.' o An entry for the block is added to the Emergency Call Additional - Data Blocks sub-registry (established by - [I-D.ietf-ecrit-additional-data]); the registry entry is the root - of the MIME sub-type (not including the 'EmergencyCallData' prefix - and any suffix such as '+xml') + Data Blocks sub-registry (established by [RFC7852]); the registry + entry is the root of the MIME sub-type (not including the + 'EmergencyCallData' prefix and any suffix such as '+xml') - A next-generation In-Vehicle System (IVS) or TSP transmits crash data - by encoding it in a standardized and registered format (such as VEDS) - and attaching it to a SIP message as a MIME body part. The body part - is identified by its MIME content-type (such as 'application/ - EmergencyCallData.VEDS+xml') in the Content-Type header field of the - body part. The body part is assigned a unique identifier which is - listed in a Content-ID header field in the body part. The SIP - message is marked as containing the crash data by adding a Call-Info - header field at the top level of the message. This Call-Info header - field contains a CID URL referencing the body part's unique - identifier, and a 'purpose' parameter identifying the data as the - crash data per the registry entry. The 'purpose' parameter's value - is 'EmergencyCallData.' plus the value associated with the data type - in the registry; for VEDS data, "purpose=EmergencyCallData.VEDS". + o A new INFO package is registered that permits carrying the new + content type and the metadata/control object (defined in + [I-D.ietf-ecrit-ecall]) in INFO messages. + + Section 6 describes how VEDA data and metadata/control are + transported within NG-ACN calls. Section 7 describes how such calls + are places. These mechanisms are thus used to place emergency calls that are - identifiable as ACN calls and that carry one or more standardized - crash data objects in an interoperable way. + identifiable as ACN calls and that carry standardized crash data in + an interoperable way. Calls by in-vehicle systems are placed via cellular networks, which - might ignore location sent by an originating device in an emergency - call INVITE, instead attaching their own location (often determined - in cooperation with the originating device). Standardized crash data - structures often include location as determined by the IVS. A - benefit of this is that it allows the PSAP to see both the location - as determined by the cellular network (often in cooperation with the - originating device) and the location as determined by the IVS. + might ignore location information sent by an originating device in an + emergency call INVITE, instead attaching their own location + information (often determined in cooperation with the originating + device). Standardized crash data structures often include location + as determined by the IVS. A benefit of this is that it allows the + PSAP to see both the location as determined by the cellular network + (often in cooperation with the originating device) and the location + as determined by the IVS. This specification inherits the ability to utilize test call functionality from Section 15 of [RFC6881]. 3. Document Scope This document is focused on how an ACN emergency call is setup and incident-related data (including vehicle, sensor, and location data) is transmitted to the PSAP using IETF specifications. For the direct model, this is the end-to-end description (between the vehicle and @@ -352,36 +344,37 @@ the TSP and the PSAP, leaving the call leg between the vehicle and the TSP up to the entities involved (i.e., IVS and TSP vendors) who are then free to use the same mechanism as for the right-hand side or not. Note that Europe has a mandated and standardized system for emergency calls by in-vehicle systems. This pan-European system is known as "eCall" and is the subject of a separate document, [I-D.ietf-ecrit-ecall], which this document builds on. Vehicles designed to operate in multiple regions might need to support eCall - as well as the ACN described here. In this case, a vehicle IVS might - determine whether to use eCall or ACN by first determining a region - or country in which it is located (e.g., from a GNSS location fix - and/or identity of or information from an MNO). If other regions - adopt other data formats, a multi-region vehicle might need to - support those as well. This document adopts the call set-up and - other technical aspects of [I-D.ietf-ecrit-ecall], which uses - [I-D.ietf-ecrit-additional-data]; this makes it straightforward to - use a different data set while keeping other technical aspects - unchanged. Hence, both NG-eCall and the NG-ACN mechanism described - here are compatible, differing primarily in the specific data block - that is sent (the eCall MSD in the case of NG-eCall, and the APCO/ - NENA VEDS used in this document), and some additions to the metadata/ - control data block. If other regions adopt their own vehicle data - sets, this can be similarly accomodated without changing other - technical aspects. + as well as NG-ACN as described here. A vehicle IVS might determine + whether to use eCall or ACN by first determining the region or + country in which it is located (e.g., from a GNSS location fix and/or + identity of or information from an MNO). If other regions adopt + other data formats, a multi-region vehicle might need to support + those as well. This document adopts the call set-up and other + technical aspects of [I-D.ietf-ecrit-ecall], which uses [RFC7852]; + this makes it straightforward to use a different data set while + keeping other technical aspects unchanged. Hence, both NG-eCall and + the NG-ACN mechanism described here are compatible, differing + primarily in the specific data block that is sent (the eCall MSD in + the case of NG-eCall, and the APCO/NENA VEDS used in this document), + and some additions to the metadata/control data block. If other + regions adopt their own vehicle data sets, this can be similarly + accomodated without changing other technical aspects. Note that any + additional data blocks require a new INFO package to permit transport + within INFO messages. 4. Overview of Legacy Deployment Models Legacy (circuit-switched) systems for placing emergency calls by in- vehicle systems generally have some ability to convey at least location and in some cases telematics data to the PSAP. Most such systems use one of three architectural models, which are described here as: "Telematics Service Provider" (TSP), "direct", and "paired". These three models are illustrated below. @@ -445,43 +438,41 @@ 5. Migration to Next-Generation Migration of emergency calls placed by in-vehicle systems to next- generation (all-IP) technology per this document provides a standardized mechanism to identify such calls and to present crash data with the call, as well as enabling additional communications modalities and enhanced functionality. This allows ACN calls and crash data to be automatically processed by the PSAP and made available to the call taker in an integrated, automated way. Because - the crash data is carried in the initial SIP INVITE (per - [I-D.ietf-ecrit-additional-data]) the PSAP can present it to the call - taker simultaneously with the appearance of the call. The PSAP can - also process the data to take other actions (e.g., if multiple calls - from the same location arrive when the PSAP is busy and a subset of - them are NG-ACN calls, a PSAP might choose to store the information - and reject the calls, since the IVS will receive confirmation that - the information has been successfully received; a PSAP could also - choose to include a message stating that it is aware of the incident - and responders are on the way; a PSAP could call the vehicle back - when a call taker is available). + the crash data is carried in the initial SIP INVITE (per [RFC7852]) + the PSAP can present it to the call taker simultaneously with the + appearance of the call. The PSAP can also process the data to take + other actions (e.g., if multiple calls from the same location arrive + when the PSAP is busy and a subset of them are NG-ACN calls, a PSAP + might choose to store the information and reject the calls, since the + IVS will receive confirmation that the information has been + successfully received; a PSAP could also choose to include a message + stating that it is aware of the incident and responders are on the + way; a PSAP could call the vehicle back when a call taker is + available). Origination devices and networks, PSAPs, emergency services networks, and other telephony environments are migrating to next-generation. - This provides opportunities for significant enhancement to interoperability and functionality, especially for emergency calls carrying additional data such as vehicle crash data. (In the U.S., a network specifically for emergency responders is being developed. This network, FirstNet, will be next-generation from the start, enhancing the ability for data exchange between PSAPs and responders.) - Migration to next-generation (NG) provides an opportunity to significantly improve the handling and response to vehicle-initiated emergency calls. Such calls can be recognized as originating from a vehicle, routed to a PSAP equipped both technically and operationally to handle such calls, and the vehicle-determined location and crash data can be made available to the call taker simultaneously with the call appearance. The PSAP can take advantage of enhanced functionality, including the ability to request the vehicle to take an action, such as sending an updated set of data, converying a message to the occupants, flashing lights, unlocking doors, etc. @@ -577,123 +569,142 @@ Figure 6: Next-Generation Paired Model If the call is routed to a PSAP that is not capable of processing the vehicle data, the PSAP ignores (or does not receive) the vehicle data. This is detectable by the IVS or TSP when the status response to the INVITE (e.., 200 OK) lacks an eCall control structure acknowledging receipt of the data [I-D.ietf-ecrit-ecall]. The IVS or TSP then proceeds as it would for a CS-ACN call (e.g., verbal conveyance of data) -6. Call Setup +6. Data Transport + + [RFC7852] establishes a general mechanism for attaching blocks of + data to a SIP emergency call. This mechanism permits certain + emergency call MIME types to be attached to SIP messages. This + document makes use of that mechanism. + + An In-Vehicle System (IVS) transmits a VEDS data block (see [VEDS]) + by attaching it to a SIP message as a MIME body part per [RFC7852]. + The body part is identified by its MIME content-type ('application/ + emergencyCallData.eCall.VEDS+xml') in the Content-Type header field + of the body part. The body part is assigned a unique identifier + which is listed in a Content-ID header field in the body part. The + SIP message is marked as containing the VEDS data by adding (or + appending to) a Call-Info header field at the top level of the SIP + message. This Call-Info header field contains a CID URL referencing + the body part's unique identifier, and a 'purpose' parameter + identifying the data as a VEDS data block per the Emergency Call + Additional Data Blocks registry entry; the 'purpose' parameter's + value is 'emergencyCallData.VEDS'. + + A PSAP or IVS transmits a metadata/control object (see + [I-D.ietf-ecrit-ecall]) by attaching it to a SIP message as a MIME + body part per [RFC7852]. The body part is identified by its MIME + content-type ('application/emergencyCallData.eCall.control+xml') in + the Content-Type header field of the body part. The body part is + assigned a unique identifier which is listed in a Content-ID header + field in the body part. The SIP message is marked as containing the + metadata/control block by adding (or appending to) a Call-Info header + field at the top level of the SIP message. This Call-Info header + field contains a CID URL referencing the body part's unique + identifier, and a 'purpose' parameter identifying the data as a + metadata/control block per the Emergency Call Additional Data Blocks + registry entry; the 'purpose' parameter's value is + 'emergencyCallData.eCall.control'. + + An In-Vehicle System (IVS) initiating an NG-ACN call includes in the + initial INVITE a VEDS data block and a metadata/control object + informing the PSAP of its capabilities. The PSAP creates a metadata/ + control object acknowledging receipt of the VEDS data and includes it + to the SIP response to the INVITE. + + A PSAP can request the vehicle to send an updated VEDS data block + during a call. The PSAP creates a metadata/control object requesting + the VEDS data and attaches it to a SIP INFO message which it sends + within the dialog. The IVS then attaches an updated VEDS data to a + SIP INFO message and sends it within the dialog. The metadata/ + control object and the VEDS are attached to an INFO message in the + same way they are attached to other messages (such as the INVITE and + the reply to the INVITE as discussed above). INFO messages are sent + using an appropriate INFO Package. See Section 11 for more + information. + + When data is being carried in an INFO request message, the body part + also carries a Content-Disposition header field set to "Info- + Package". + +7. Call Setup A next-generation In-Vehicle System (IVS) initiates an NG-ACN call with a SIP INVITE using one of the SOS sub-services "SOS.ecall.automatic" or "SOS.ecall.manual" in the Request-URI, standard sets of crash data and capabilities data encoded in standardized and registered formats, attached as additional data - blocks as specified in Section 4.1 of - [I-D.ietf-ecrit-additional-data]. As described in that document, - each data block is identified by its MIME content-type, and pointed - to by a CID URL in a Call-Info header with a 'purpose' parameter - value corresponding to the data block. + blocks as specified in Section 4.1 of [RFC7852]. As described in + that document, each data block is identified by its MIME content- + type, and pointed to by a CID URL in a Call-Info header with a + 'purpose' parameter value corresponding to the data block. - Should new data blocks be needed (e.g., in other regions or in the - future), the steps required during standardization are: + If new data blocks are needed (e.g., in other regions or in the + future), the steps required during standardization are briefly + summarized below: o A set of data is standardized by an SDO or appropriate organization o A MIME Content-Type for the crash data set is registered with IANA * If the data is specifically for use in emergency calling, the MIME type is normally under the 'application' type with a subtype starting with 'EmergencyCallData.' * If the data format is XML, then by convention the name has a suffix of '+xml' o The item is registered in the Emergency Call Additional Data - registry, as defined in Section 9.1.7 of - [I-D.ietf-ecrit-additional-data] + registry, as defined in Section 9.1.7 of [RFC7852] * For emergency-call-specific formats, the registered name is the root of the MIME Content-Type (not including the 'EmergencyCallData' prefix and any suffix such as '+xml') as - described in Section 4.1 of [I-D.ietf-ecrit-additional-data]. - - When placing an emergency call: - - o The crash data set is created and encoded per its specification - - o IVS capability data is encoded per the specification in - [I-D.ietf-ecrit-ecall] as extended in this document - - o The crash data set and capabilities data are attached to the - emergency call INVITE as specified in Section 4.1 of - [I-D.ietf-ecrit-additional-data], that is, as MIME body parts - identified by the MIME Content-Type in the body part's Content- - Type header field - - o Each body part is assigned a unique identifier label in the - Content-ID header field of the body part - - o Call-Info header fields at the top level of the INVITE are added - that reference the crash data and capabilities data and identify - each by its MIME root (as registered in the Emergency Call - Additional Data registry) - - * The crash and capabilities data are referenced in Call-Info - header fields by CID URLs that contain the unique Content ID - assigned to the body part - - * The crash and capabilities data are identified in the Call-Info - header fields by a 'purpose' parameter whose value is - 'EmergencyCallData.' concatenated with the specific data - block's entry in the Emergency Call Additional Data registry + described in Section 4.1 of [RFC7852]. - * A Call-Info header field can be either solely to reference one - item of data (and hence have only the one URL) or can also - contain other URLs referencing other data + o A new INFO package is registered that permits carrying the the new + content type, the metadata/control object (defined in + [I-D.ietf-ecrit-ecall]), and for compatibility, the MSD and VEDS + objects, in INFO messages. - o Any additional data sets are included by following the same steps + When placing an emergency call, the crash data set and IVS capability + data are transported as described in Section 6. The Vehicle Emergency Data Set (VEDS) is an XML structure defined by the Association of Public-Safety Communications Officials (APCO) and - the National Emergency Number Association (NENA) [VEDS]. The - 'application/EmergencyCallData.VEDS+xml' MIME content-type is used to - identify it. The 'VEDS' entry in the Emergency Call Additional Data - registry is used to construct a 'purpose' parameter value for - conveying VEDS data in a Call-Info header. - - The VEDS data is attached as a body part with MIME content type - 'application/EmergencyCallData.VEDS+xml' which is pointed at by a - Call-Info URL of type CID with a 'purpose' parameter of - 'EmergencyCallData.VEDS'. + the National Emergency Number Association (NENA) [VEDS]. It is + carried in body part with MIME content-type 'application/ + EmergencyCallData.VEDS+xml'. Entities along the path between the vehicle and the PSAP are able to identify the call as an ACN call and handle it appropriately. The - PSAP is able to identify the crash data as well as any other - additional data attached to the INVITE by examining the Call-Info - header fields for 'purpose' parameters whose values start with - 'EmergencyCallData.' The PSAP is able to access the data it is - capable of handling and is interested in by checking the 'purpose' - parameter values. + PSAP is able to identify the crash and capabilities data attached to + the INVITE by examining the Call-Info header fields for 'purpose' + parameters whose values start with 'EmergencyCallData.' The PSAP is + able to access the data it is capable of handling and is interested + in by checking the 'purpose' parameter values. This document extends [I-D.ietf-ecrit-ecall] by reusing the call set- up and other normative requirements with the exception that in this document, support for the eCall MSD is OPTIONAL and support for VEDS - in REQUIRED. This document also extends the metadata/control object - defined in [I-D.ietf-ecrit-ecall] by adding new elements, attributes, - and values. + in REQUIRED. This document also adds new attribute values to the + metadata/control object defined in [I-D.ietf-ecrit-ecall]. -6.1. Call Routing +8. Call Routing An Emergency Services IP Network (ESInet) is a network operated by or on behalf of emergency services authorities. It handles emergency call routing and processing before delivery to a PSAP. In the NG9-1-1 architecture adopted by NENA as well as the NG1-1-2 architecture adopted by EENA, each PSAP is connected to one or more ESInets. Each originating network is also connected to one or more ESInets. The ESInets maintain policy-based routing rules which control the routing and processing of emergency calls. The centralization of such rules within ESInets provides for a cleaner @@ -708,34 +719,35 @@ calls requiring translation or relay services). In an environment that uses ESInets, the originating network need only detect that the service URN of an emergency call is or starts with "sos", passing all types of emergency calls to an ESInet. The ESInet is then responsible for routing such calls to an appropriate PSAP. In an environment without an ESInet, the emergency services authorities and the originating carriers determine how such calls are routed. -7. eCall Metadata/Control Extensions +9. New Metadata/Control Values - This document extends the eCall metadata/control structure defined in - [I-D.ietf-ecrit-ecall] by adding new elements, attributes, and - values. + This document adds new attribute values to the metadata/control + structure defined in [I-D.ietf-ecrit-ecall]. - The element is permitted in a control block sent by the IVS - to the PSAP, to acknowledge receipt of a request by the PSAP and - indicate if the request was carried out, when that request would - not otherwise be acknowledged (if the PSAP requests the vehicle to - send data and the vehicle does so, the data serves as a success - acknowledgement). + In addition to the base usage from the PSAP to the IVS to + acknowledge receipt of crash data, the element is also + contained in a metadata/control block sent by the IVS to the PSAP. + This is used by the IVS to acknowledge receipt of a request by the + PSAP and indicate if the request was carried out when that request + would not otherwise be acknowledged (if the PSAP requests the + vehicle to send data and the vehicle does so, the data serves as a + success acknowledgement). - A new element is added; used in a control block + The element is used in a metadata/control block sent from the IVS to the PSAP (e.g., in the initial INVITE) to inform the PSAP of the vehicle capabilities. Child elements contain all actions and data types supported by the vehicle and all available lamps (lights) and cameras. New request values are added to the element to enable the PSAP to request the vehicle to perform actions. Mandatory Actions (the IVS and the PSAP MUST support): @@ -744,346 +756,195 @@ Optional Actions (the IVS and the PSAP MAY support): o Play and/or display static (pre-defined) message o Speak/display dynamic text (text supplied in action) o Flash or turn on or off a lamp (light) o Honk horn o Enable a camera The element indicates the object being acknowledged (i.e., a - data object or a element), and reports success or failure. + data object or a metadata/control block containing + elements), and reports success or failure. - The element has child elements to indicate + The element has child elements indicating the actions supported by the IVS. The element contains attributes to indicate the request and to supply any needed information, and MAY contain a child element to contain the text for a dynamic message. The 'action' attribute is mandatory and indicates the specific action. [I-D.ietf-ecrit-ecall] established an IANA registry to contain the allowed values; this document adds new values to that registry in - Table 3. + Table 2. -7.1. New values for the 'action' attribute' + Per [I-D.ietf-ecrit-ecall], the PSAP sends a control/metadata block + in response to the VEDS data sent by the IVS in SIP requests other + than INFO (e.g., the INVITE). This metadata/control block is sent in + the SIP response to the request (e.g., the INVITE response). When + the PSAP needs to send a control block that is not an immediate + response to a VEDS or other data sent by the IVS, the control block + is transmitted from the PSAP to the IVS in a SIP INFO request within + the established dialog. The IVS sends the requested data (e.g., the + VEDS) or an acknowledgment (for requests other than to send data) in + a new INFO request. This mechanism flexibly allows the PSAP to send + metadata/control data to the IVS and the IVS to respond. If control + data sent in a response message requests the IVS to send a new VEDS + or other data block, or to perform an action other than sending data, + the IVS sends the requested data or an acknowledgment regarding the + action in an INFO message within the dialog. + +9.1. New values for the 'action' attribute' The following new "action" values are defined: - 'msg-static' displays or plays a predefined message (translated as - appropriate for the language of the vehicle's interface). A registry - is created in Section 12.5 for messages and their IDs. Vehicles - include the highest registered message in their - element to indicate support for all messages up to and including the - indicated value. + msg-static: displays or plays a predefined message (translated as + appropriate for the language of the vehicle's interface). A + registry is created in Section 15.4 for messages and their IDs. + Vehicles include the highest registered message in their + element to indicate support for all messages up to + and including the indicated value. - 'msg-dynamic' displays or speaks (via text-to-speech) a dynamic + msg-dynamic displays or speaks (via text-to-speech) a dynamic message included in the request. - 'honk' sounds the horn. + honk sounds the horn. - 'lamp' turns a lamp (light) on, off, or flashes. + lamp turns a lamp (light) on, off, or flashes. - 'enable-camera' adds a one-way media stream (established via SIP re- - INVITE sent by the vehicle) to enable the PSAP call taker to view a - feed from a camera. + enable-camera adds a one-way media stream (established via SIP re- + INVITE sent by the vehicle) to enable the PSAP call taker to view + a feed from a camera. Note that there is no 'request' action to play dynamic media (such as an audio message). The PSAP can send a SIP re-INVITE to establish a one-way media stream for this purpose. -7.2. element extensions - - The element is extended to be transmitted by the IVS to the - PSAP to acknowledge receipt of a element that requested the - IVS to perform an action other than transmitting a data object (e.g., - a request to display a message would be acknowledged, but a request - to transmit a data object would not result in a separate - element being sent, since the data object itself serves as - acknowledgment.) An element sent by an IVS references the - unique ID of the request being acknowledged, indicates whether the - request was successfully performed, and if not, optionally includes - an explanation. - - The element has the following new child elements: - -7.2.1. New Child Element of the element - - The element has the following new child element: - - Name: actionResult - Usage: Optional - Description: An element indicates the result of an - action (other than a 'send-data' action). When an element - is in response to a control object with multiple - elements (that are not 'send-data' actions), the element - contains an element for each. - The element has the following - attributes: +9.2. Request Example - Name: action - Usage: Mandatory - Type: token - Description: Contains the value of the 'action' attribute of the - element + + - Name: success - Usage: Mandatory - Type: Boolean - Description: Indicates if the action was successfully - accomplished + + + + + Remain calm. Help is on the way. + - Name: reason - Usage: Conditional - Type: token - Description: Used when 'success' is "False", this attribute - contains a reason code for a failure. A registry for reason - codes is defined in Section 12.6. + - Name: details - Usage: optional - Type: string - Description: Contains further explanation of the circumstances of - a success or failure. The contents are implementation-specific - and human-readable. + Figure 7: Request Example - Example: +9.3. The element - Example: + In [I-D.ietf-ecrit-ecall], the element is transmitted by the + PSAP to acknowledge the MSD. Here, the element is also + transmitted by the PSAP to acknowledge the VEDS data and by the IVS + to acknowledge receipt of a element that requested the IVS + to perform an action other than transmitting a data object (e.g., a + request to display a message would be acknowledged, but a request to + transmit VEDS data would not result in a separate element being + sent, since the data object itself serves as acknowledgment.) An + element sent by an IVS references the unique ID of the + metadata/control object containing the request(s) and indicates + whether the request was successfully performed, and if not, + optionally includes an explanation. -7.2.2. Ack Examples +9.3.1. Ack Examples - Figure 7: Ack Example from IVS to PSAP - -7.3. The element - - The element is transmitted by the IVS to indicate to - the PSAP its capabilities. No attributes for this element are - currently defined. The following child elements are defined: - -7.3.1. Child Elements of the element - - The element has the following child elements: + Figure 8: Ack Example from IVS to PSAP - Name: request - Usage: Mandatory - Description: The element contains a child - element per action supported by the vehicle. +9.4. The element - Because support for a 'send-data' action is REQUIRED, a - child element with a "send-data" 'action' attribute is also - REQUIRED. The 'supported-datatypes' attribute is REQUIRED in this - element within a element, and MUST - contain at a minimum the 'VEDS' data block value; it SHOULD - contain all data blocks supported by the IVS. + The element ([I-D.ietf-ecrit-ecall]) is transmitted by + the IVS to indicate its capabilities to the PSAP. - All other actions are OPTIONAL. + The element contains a child element per + action supported by the vehicle. The vehicle MUST support sending + the VEDS data object and so includes at a minimum a child + element with the 'action' attribute set to "send-data" and the + 'supported-values' attribute containing all data blocks supported by + the IV, which MUST include 'VEDS'. All other actions are OPTIONAL. If the "msg-static" action is supported, a child element - with a "msg-static" 'action' attribute is sent, with a 'msgid' - attribute set to the highest supported static message supported by - the vehicle. A registry is created in Section 12.5 to map 'msgid' - values to static text messages. By sending the highest supported - static message number in its element, the vehicle - indicates its support for all static messages in the registry up - to and including that value. - - If the "lamp" action is supported, a child element with - a "lamp" 'action' is sent, with a 'supported-lamps' attribute set - to all supported lamp IDs. + with the 'action' attribute set to "msg-static" is included, with the + 'msgid' attribute set to the highest supported static message + supported by the vehicle. A registry is created in Section 15.4 to + map 'msgid' values to static text messages. By sending the highest + supported static message number in its element, the + vehicle indicates its support for all static messages in the registry + up to and including that value. - If the "enable-camera" action is supported, a child - element with an "enable-camera" 'action' is sent, with a - 'supported-cameras' attribute set to all supported camera IDs. + If the "lamp" action is supported, a child element with the + 'action' attribute set to "lamp" is included, with the 'supported- + values' attribute set to all supported lamp IDs. A registry is + created in Section 15.5 to contain lamp ID values. - Examples: - - - - + If the "enable-camera" action is supported, a child element + with the 'action' attribute set to "enable-camera" is included, with + the 'supported-values' attribute set to all supported camera IDs. A + registry is created in Section 15.6 to contain camera ID values. -7.3.2. Capabilities Example +9.4.1. Capabilities Example - + - + - Figure 8: Capabilities Example - -7.4. element extensions - - This document extends the element to be permitted one or - more times on its own or as a child elements of a - element. The following new attributes, values, and child elements - are defined for the element: - -7.4.1. New Attributes of the element - - The element has the following new attributes: - - Name: msgid - Usage: Conditional - Type: int - Description: Mandatory with a "msg-static" action. Indicates the - identifier of the static message to be displayed and/or spoken for - the vehicle occupants. This document establishes an IANA registry - for messages and their IDs, in Section 12.5 - Example: msgid="3" - - Name: persistance - Usage: Optional - Type: duration - Description: Specifies how long to carry on the specified action, - for example, how long to continue honking or flashing. If absent, - the default is for the duration of the ACN call. - Example: persistance="PT1H" - - Name: supported-datatypes - Usage: Conditional - Type: string - Description: Used with a 'send-data' action in a element - that is a child of a element, this attribute lists - all data blocks that the vehicle can transmit, using the same - identifier as in the 'purpose' attribute in a Call-Info header - field to point to the data block. Permitted values are contained - in the 'Emergency Call Data Types' IANA registry established in - [I-D.ietf-ecrit-additional-data]. Multiple values are separated - with a semicolon. - Example: supported-datatypes="VEDS; eCall.MSD" - - Name: lamp-action - Usage: Conditional - Type: token - Description: Used with a 'lamp' action, indicates if the lamp is to - be illuminated, turned off, or flashed. Permitted values are - 'on', 'off', and 'flash'. - - Example: lamp-action="flash" - - Name: lamp-ID - Usage: Conditional - Type: token - Description: Used with a 'lamp' action, indicates which lamp the - action affects. Permitted values are contained in the registry of - lamp-ID tokens created in Section 12.7 - Example: lamp-ID="hazard" - - Name: supported-lamps - Usage: Conditional - Type: string - Description: Used with a 'lamp' action in a element that - is a child of a element, this attribute lists all - supported lamps, using values in the registry of lamp-ID tokens - created in Section 12.7. Multiple values are separated with a - semicolon. - Example: supported-lamps="head; interior; fog-front; fog-rear; - brake; position-front; position-rear; turn-left; turn-right; - hazard" - - Name: camera-ID - Usage: Conditional - Type: token - Description: Used with an 'enable-camera' action, indicates which - camera to enable. Permitted values are contained in the registry - of camera-ID tokens created in Section 12.8. When a vehicle - camera is enabled, the IVS sends a re-INVITE to negotiate a one- - way media stream for the camera. - Example: camera-ID="backup" - - Name: supported-cameras - Usage: Conditional - Type: string - Description: Used with an 'enable-camera' action in a - element that is a child of a element, this attribute - lists all cameras that the vehicle supports (can add as a video - feed in the current dialog), using the same identifiers as are - used in the 'camera-ID' attribute (contained in the camera ID - registry in Section 12.8). Multiple values are separated with a - semicolon. - Example: supported-cameras="backup; interior" - -7.4.2. New Child Elements of the element - - The element has the following new child elements: - - Name: text - Usage: Conditional - Type: string - Description: Used within a element to - contain the text to be displayed and/or spoken (via text-to- - speech) for the vehicle occupants. - Example: Emergency authorities are aware of your incident and - location. Due to a multi-vehicle incident in your area, no one is - able to speak with you right now. Please remain calm. We will - assist you soon. - -7.4.3. Request Example - - - - - - - - - Remain calm. Help is on the way. - - - - - Figure 9: Request Example + Figure 9: Capabilities Example -8. Test Calls +10. Test Calls An NG-ACN test call is a call that is recognized and treated to some extent as an NG-ACN call but not given emergency call treatment and not handled by a call taker. The specific handling of test NG-ACN calls is not itself standardized; the test call facility is intended to allow the IVS, user, or TSP to verify that an NG-ACN call can be successfully established with voice and/or other media communication. + The IVS might also be able to verify that the crash data was successfully received. This document builds on [I-D.ietf-ecrit-ecall], which inherits the ability to utilize test call functionality from Section 15 of [RFC6881]. A service URN starting with "test." indicates a test call. [I-D.ietf-ecrit-ecall] registered "urn:service:test.sos.ecall" for test calls. MNOs, emergency authorities, ESInets, and PSAPs determine how to @@ -1097,21 +958,137 @@ successfully processed) in addition to supporting media loopback per [RFC6881]). Note that since test calls are placed using "test" as the parent service URN and "sos" as a child, such calls are not treated as an emergency call and so some functionality might not apply (such as preemption or service availability for devices lacking service ("non- service-initialized" or "NSI" devices) if those are available for emergency calls). -9. Example +11. The emergencyCallData.eCall.VEDS INFO package + + This document registers the 'emergencyCallData.eCall.VEDS' INFO + package. + + Both endpoints (the IVS and the PSAP equipment) include + 'emergencyCallData.eCall.VEDS' in a Recv-Info header field per + [RFC6086] to indicate ability to receive INFO messages carrying data + as described here. + + Support for the 'emergencyCallData.eCall.VEDS' INFO package indicates + the ability to receive the VEDS body part as specified in [TBD: THIS + DOCUMENT] and the metadata/control body part as specified in + [I-D.ietf-ecrit-ecall]. + + An INFO request message carrying data related to an emergency call as + described in [TBD: THIS DOCUMENT] has an Info-Package header field + set to 'emergencyCallData.eCall.VEDS' per [RFC6086]. + +11.1. INFO Package Requirements + + The requirements of Section 10 of [RFC6086] are addressed in the + following sections. + +11.1.1. Overall Description + + This section describes "what type of information is carried in INFO + requests associated with the Info Package, and for what types of + applications and functionalities UAs can use the Info Package." + + INFO requests associated with the emergencyCallData.eCall.VEDS INFO + package carry data associated with emergency calls as defined in + [TBD: THIS DOCUMENT]. The application is vehicle-initiated emergency + calls established using SIP. The functionality is to carry vehicle + data and metadata/control information between vehicles and PSAPs. + Refer to [TBD: THIS DOCUMENT] for more information. + +11.1.2. Applicability + + This section describes "why the Info Package mechanism, rather than + some other mechanism, has been chosen for the specific use-case...." + + The use of INFO is based on an analysis of the requirements against + the intent and effects of INFO versus other approaches (which + included SIP MESSAGE, SIP OPTIONS, SIP re-INVITE, media plane + transport, and non-SIP protocols). In particular, the transport of + emergency call data blocks occurs within a SIP emergency dialog, per + Section 6, and is normally carried in the initial INVITE and its + response; the use of INFO only occurs when emergency-call-related + data needs to be sent mid-call. While MESSAGE could be used, it is + not tied to a SIP dialog as is INFO and thus might not be associated + with the dialog. SIP OPTIONS or re-INVITE could also be used, but is + seen as less clean than INFO. SUBSCRIBE/NOTIFY could be coerced into + service, but the semantics are not a good fit, e.g., the subscribe/ + notify mechanism provides one-way communication consisting of (often + multiple) notifications from notifier to subscriber indicating that + certain events in notifier have occurred, whereas what's needed here + is two-way communication of data related to the emergency dialog. + Use of the media plane mechanisms was discounted because the number + of messages needing to be exchanged in a dialog is normally zero or + very few, and the size of the data is likewise very small. The + overhead caused by user plane setup (e.g., to use MSRP as transport) + would be disproportionately large. + + Based on the the analyses, the SIP INFO method was chosen to provide + for mid-call data transport. + +11.1.3. Info Package Name + + The info package name is emergencyCallData.eCall.VEDS + +11.1.4. Info Package Parameters + + None + +11.1.5. SIP Option-Tags + + None + +11.1.6. INFO Message Body Parts + + The 'application/emergencyCallData.eCall.VEDS+xml' and 'application/ + emergencyCallData.eCall.control+xml' MIME types are associated with + this INFO package. See [TBD: THIS DOCUMENT] and + [I-D.ietf-ecrit-ecall] for more information. + +11.1.7. Info Package Usage Restrictions + + Usage is limited to vehicle-initiated emergency calls as defined in + [TBD: THIS DOCUMENT]. + +11.1.8. Rate of INFO Requests + + The rate of SIP INFO requests associated with the + emergencyCallData.eCall.VEDS info package is normally quite low (most + dialogs are likely to contain zero INFO requests, while others can be + expected to carry an occasional request). + +11.1.9. Info Package Security Considerations + + The MIME content type registations for the data blocks that can be + carried using this IFO package contains a discussion of the security + and/or privacy considerations specific to that data block. The + "Security Considerations" and "Privacy Considerations" sections of + [TBD: THIS DOCUMENT] discuss security and privacy considerations of + the data carried in vehicle-initiated emergency calls as described in + that document. + +11.1.10. Implementation Details + + See [TBD: THIS DOCUMENT] for protocol details. + +11.1.11. Examples + + See [TBD: THIS DOCUMENT] for protocol examples. + +12. Example Figure 10 shows an NG-ACN call routing. The mobile network operator (MNO) routes the call to an Emergency services IP Network (ESInet), as for any emergency call. The ESInet routes the call to an appropriate NG-ACN-capable PSAP (using location information and the fact that that it is an NG-ACN call). The call is processed by the Emergency Services Routing Proxy (ESRP), as the entry point to the ESInet. The ESRP routes the call to an appropriate NG-ACN-capable PSAP, where the call is received by a call taker. (In deployments where there is no ESInet, the MNO itself routes the call directly to @@ -1332,85 +1309,93 @@ + supported-values="backup; interior"/> --boundary1-- Figure 11: SIP INVITE indicating a Vehicule-Initated Emergency Call -10. Security Considerations +13. Security Considerations - Since this document relies on [I-D.ietf-ecrit-ecall] and - [I-D.ietf-ecrit-additional-data], the security considerations - described there and in [RFC5069] apply here. Implementors are - cautioned to read and understand the discussion in those documents. + Since this document relies on [I-D.ietf-ecrit-ecall] and [RFC7852], + the security considerations described there and in [RFC5069] apply + here. Implementors are cautioned to read and understand the + discussion in those documents. As with emergency service systems where location data is supplied or determined with the assistance of an end host, there is the possibility that that location is incorrect, either intentially (e.g., in a denial of service attack against the emergency services infrastructure) or due to a malfunctioning device. The reader is referred to [RFC7378] for a discussion of some of these vulnerabilities. In addition to the security considerations discussion specific to the metadata/control object in [I-D.ietf-ecrit-ecall], note that vehicles MAY decline to carry out any requested action (e.g., if the vehicle requires but is unable to verify the certificate used to sign the request). The vehicle MAY use any value in the reason registry to indicate why it did not take an action (e.g., the generic "unable" or the more specific "security-failure"). -11. Privacy Considerations +14. Privacy Considerations Since this document builds on [I-D.ietf-ecrit-ecall], which itself - builds on [I-D.ietf-ecrit-additional-data], the data structures - specified there, and the corresponding privacy considerations - discussed there, apply here as well. The VEDS data structure - contains optional elements that can carry identifying and personal - information, both about the vehicle and about the owner, as well as - location information, and so needs to be protected against - unauthorized disclosure, as discussed in - [I-D.ietf-ecrit-additional-data]. Local regulations may impose - additional privacy protection requirements. + builds on [RFC7852], the data structures specified there, and the + corresponding privacy considerations discussed there, apply here as + well. The VEDS data structure contains optional elements that can + carry identifying and personal information, both about the vehicle + and about the owner, as well as location information, and so needs to + be protected against unauthorized disclosure, as discussed in -12. IANA Considerations + [RFC7852]. Local regulations may impose additional privacy + protection requirements. + + The additional functionality enabled by this document, such as access + to vehicle camera streams, carries a burden of protection and so + implementations need to be careful that access is only provided + within the context of an emergency call or to an emergency services + provider (e.g., by verifying that the request for camera access is + signed by a certificate issued by an emergency services registrar). + +15. IANA Considerations This document registers the 'application/EmergencyCall.VEDS+xml' MIME content type, and adds "VEDS" to the Emergency Call Additional Data - registry. This document adds to and creates new sub-registries in - the 'eCall Control Data' registry created in [I-D.ietf-ecrit-ecall]. + registry. This document adds to and creates sub-registries in the + 'Metadata/Control Data' registry created in [I-D.ietf-ecrit-ecall]. + This document registers a new INFO package. -12.1. MIME Content-type Registration for 'application/ +15.1. MIME Content-type Registration for 'application/ EmergencyCall.VEDS+xml' - This specification requests the registration of a new MIME type - according to the procedures of RFC 4288 [RFC4288] and guidelines in - RFC 3023 [RFC3023]. + This specification requests the registration of a new MIME content + type according to the procedures of RFC 4288 [RFC4288] and guidelines + in RFC 3023 [RFC3023]. MIME media type name: application MIME subtype name: EmergencyCallData.VEDS+xml Mandatory parameters: none Optional parameters: charset Indicates the character encoding of enclosed XML. @@ -1421,22 +1406,23 @@ Security considerations: This content type is designed to carry vehicle crash data during an emergency call. This data can contain personal information including vehicle VIN, location, direction, etc. Appropriate precautions need to be taken to limit unauthorized access, inappropriate disclosure to third parties, and eavesdropping of this information. - Please refer to Section 7 and Section 8 of - [I-D.ietf-ecrit-additional-data] for more information. + + Please refer to Section 7 and Section 8 of [RFC7852] for more + information. When this content type is contained in a signed or encrypted body part, the enclosing multipart (e.g., multipart/signed or multipart/encrypted) has the same Content-ID as the data part. This allows an entity to identify and access the data blocks it is interested in without having to dive deeply into the message structure or decrypt parts it is not interested in. (The 'purpose' parameter in a Call-Info header field identifies the data, and the CID URL points to the data block in the body, which has a matching Content-ID body part header field). @@ -1439,269 +1425,186 @@ structure or decrypt parts it is not interested in. (The 'purpose' parameter in a Call-Info header field identifies the data, and the CID URL points to the data block in the body, which has a matching Content-ID body part header field). Interoperability considerations: None Published specification: [VEDS] Applications which use this media type: Emergency Services + Additional information: None Magic Number: None File Extension: .xml Macintosh file type code: 'TEXT' Persons and email addresses for further information: Randall - Gellensm rg+ietf (at) randy.pensive.org; Hannes Tschofenig, - Hannes.Tschofenig (at) gmx.net + Gellensm rg+ietf@randy.pensive.org; Hannes Tschofenig, + Hannes.Tschofenig@gmx.net Intended usage: LIMITED USE Author: This specification is a work item of the IETF ECRIT working group, with mailing list address . Change controller: The IESG -12.2. Registration of the 'VEDS' entry in the Emergency Call Additional +15.2. Registration of the 'VEDS' entry in the Emergency Call Additional Data registry This specification requests IANA to add the 'VEDS' entry to the Emergency Call Additional Data registry, with a reference to this - document. The Emergency Call Additional Data registry has been - established by [I-D.ietf-ecrit-additional-data]. - -12.3. Additions to the eCall Control Extension Registry - - This document uses the "eCall Control Extension Registry" to add new - elements, attributes, and values to the eCall metadata/control - object, as per [I-D.ietf-ecrit-ecall]: - - +-----------+---------------------+---------------------------------+ - | Type | Name | Description | - +-----------+---------------------+---------------------------------+ - | Attribute | msgid | See Section 7.2 of this | - | | | document | - | | | | - | Attribute | persistance | See Section 7.2 of this | - | | | document | - | | | | - | Attribute | supported-datatypes | See Section 7.2 of this | - | | | document | - | | | | - | Attribute | lamp-action | See Section 7.2 of this | - | | | document | - | | | | - | Attribute | lamp-ID | See Section 7.2 of this | - | | | document | - | | | | - | Attribute | supported-lamps | See Section 7.2 of this | - | | | document | - | | | | - | Attribute | camera-ID | See Section 7.2 of this | - | | | document | - | | | | - | Element | text | See Section 7.4.2 of this | - | | | document | - | | | | - | Element | actionResult | See Section 7.2.1 of this | - | | | document | - | | | | - | Attribute | action | See Section 7.2.1 of this | - | | | document | - | | | | - | Attribute | success | See Section 7.2.1 of this | - | | | document | - | | | | - | Attribute | reason | See Section 7.2.1 of this | - | | | document | - | | | | - | Attribute | details | See Section 7.2.1 of this | - | | | document | - +-----------+---------------------+---------------------------------+ - - Table 2: eCall Control Extension Registry New Values + document. The Emergency Call Additional Data registry was + established by [RFC7852]. -12.4. eCall Action Extensions +15.3. New Action Values This document adds new values for the 'action' attribute of the - element in the "eCall Control Action Registry" registry - created by [I-D.ietf-ecrit-ecall]. + element in the "Action Registry" registry created by + [I-D.ietf-ecrit-ecall]. - +---------------+------------------------------+ + +---------------+-------------------------------------+ | Name | Description | - +---------------+------------------------------+ - | msg-static | Section 7.1 of this document | + +---------------+-------------------------------------+ + | msg-static | Section 9.1 of [TBD: THIS DOCUMENT] | | | | - | msg-dynamic | Section 7.1 of this document | + | msg-dynamic | Section 9.1 of [TBD: THIS DOCUMENT] | | | | - | honk | Section 7.1 of this document | + | honk | Section 9.1 of [TBD: THIS DOCUMENT] | | | | - | lamp | Section 7.1 of this document | + | lamp | Section 9.1 of [TBD: THIS DOCUMENT] | | | | - | enable-camera | Section 7.1 of this document | - +---------------+------------------------------+ + | enable-camera | Section 9.1 of [TBD: THIS DOCUMENT] | + +---------------+-------------------------------------+ - Table 3: eCall Control Action Registry New Values + Table 2: Action Registry New Values -12.5. eCall Static Message Registry +15.4. Static Message Registry - This document creates a new sub-registry called "eCall Static Message - Registry" in the "eCall Control Data" registry established by + This document creates a new sub-registry called "Static Message + Registry" in the "Metadata/Control Data" registry established by [I-D.ietf-ecrit-ecall]. Because all compliant vehicles are expected to support all static messages translated into all languages supported by the vehicle, it is important to limit the number of such messages. As defined in [RFC5226], this registry operates under "Publication Required" rules, which require a stable, public document - and imply expert review of the publication. The expert should + and implies expert review of the publication. The expert should determine that the document has been published by an appropriate emergency services organization (e.g., NENA, EENA, APCO) or by the IETF with input from an emergency services organization, and that the proposed message is sufficiently distinguishable from other messages. - The content of this registry includes: + The contents of this registry are: - ID: An integer identifier to be used in the 'msgid' attribute of an - eCall control element. + ID: An integer identifier to be used in the 'msgid' attribute of a + metadata/control element. Message: The text of the message. Messages are listed in the registry in English; vehicles are expected to implement translations into languages supported by the vehicle. When new messages are added to the registry, the message text is determined by the registrant; IANA assigns the IDs. Each message is assigned a consecutive integer value as its ID. This allows an IVS to indicate by a single integer value that it supports all messages with that value or lower. - The initial set of values is listed in Table 4. + The initial set of values is listed in Table 3. +----+--------------------------------------------------------------+ | ID | Message | +----+--------------------------------------------------------------+ | 1 | Emergency authorities are aware of your incident and | | | location, but are unable to speak with you right now. We | | | will help you as soon as possible. | +----+--------------------------------------------------------------+ - Table 4: eCall Static Message Registry - -12.6. eCall Reason Registry - - This document creates a new sub-registry called "eCall Reason - Registry" in the "eCall Control Data" registry established by - [I-D.ietf-ecrit-ecall]. This new sub-registry contains values for - the 'reason' attribute of the element. As defined in - [RFC5226], this registry operates under "Expert Review" rules. The - expert should determine that the proposed reason is sufficiently - distinguishable from other reasons and that the proposed description - is understandable and correctly worded. - - The content of this registry includes: - - ID: A short string identifying the reason, for use in the 'reason' - attribute of an element. - - Description: A description of the reason. - - The initial set of values is listed in Table 5. - - +------------------+------------------------------------------------+ - | ID | Description | - +------------------+------------------------------------------------+ - | unsupported | The 'action' is not supported. | - | | | - | unable | The 'action' could not be accomplished. | - | | | - | data-unsupported | The data item referenced in a 'send-data' | - | | request is not supported. | - | | | - | security-failure | The authenticity of the request or the | - | | authority of the requestor could not be | - | | verified. | - +------------------+------------------------------------------------+ - - Table 5: eCall Reason Registry + Table 3: Static Message Registry -12.7. eCall Lamp ID Registry +15.5. Lamp ID Registry - This document creates a new sub-registry called "eCall Lamp ID - Registry" in the "eCall Control Data" registry established by - [I-D.ietf-ecrit-ecall]. This new sub-registry standardizes the names - of automotive lamps (lights). As defined in [RFC5226], this registry - operates under "Expert Review" rules. The expert should determine - that the proposed lamp name is clearly understandable and is - sufficiently distinguishable from other lamp names. + This document creates a new sub-registry called "Lamp ID Registry" in + the "Metadata/Control Data" registry established by + [I-D.ietf-ecrit-ecall]. This new sub-registry uniquely identifies + the names of automotive lamps (lights). As defined in [RFC5226], + this registry operates under "Expert Review" rules. The expert + should determine that the proposed lamp name is clearly + understandable and is sufficiently distinguishable from other lamp + names. - The content of this registry includes: + The contents of this registry are: - Name: The identifier to be used in the 'lamp-ID' attribute of an - eCall control element. + Name: The identifier to be used in the 'lamp-ID' attribute of a + metadata/control element. Description: A description of the lamp (light). - The initial set of values is listed in Table 6. + The initial set of values is listed in Table 4. +----------------+---------------------------------------------+ | Name | Description | +----------------+---------------------------------------------+ | head | The main lamps used to light the road ahead | | | | | interior | Interior lamp, often at the top center | | | | | fog-front | Front fog lamps | | | | | fog-rear | Rear fog lamps | | | | | brake | Brake indicator lamps | | | | + | brake-center | Center High Mounted Stop Lamp | + | | | | position-front | Front position/parking/standing lamps | | | | | position-rear | Rear position/parking/standing lamps | | | | | turn-left | Left turn/directional lamps | | | | | turn-right | Right turn/directional lamps | | | | | hazard | Hazard/four-way lamps | +----------------+---------------------------------------------+ - Table 6: eCall Lamp ID Registry Initial Values + Table 4: Lamp ID Registry Initial Values -12.8. eCall Camera ID Registry +15.6. Camera ID Registry - This document creates a new sub-registry called "eCall Camera ID - Registry" in the "eCall Control Data" registry established by - [I-D.ietf-ecrit-ecall]. This new sub-registry standardizes the names - of automotive camera. As defined in [RFC5226], this registry - operates under "Expert Review" rules. The expert should determine - that the proposed camera name is clearly understandable and is - sufficiently distinguishable from other camera names. + This document creates a new sub-registry called "Camera ID Registry" + in the "Metadata/Control Data" registry established by + [I-D.ietf-ecrit-ecall]. This new sub-registry uniquely identifies + automotive cameras. As defined in [RFC5226], this registry operates + under "Expert Review" rules. The expert should determine that the + proposed camera name is clearly understandable and is sufficiently + distinguishable from other camera names. - The content of this registry includes: + The contents of this registry are: Name: The identifier to be used in the 'camera-ID' attribute of an eCall control element. Description: A description of the camera. - The initial set of values is listed in Table 7. + The initial set of values is listed in Table 5. +-------------+-----------------------------------------------------+ | Name | Description | +-------------+-----------------------------------------------------+ | backup | Shows what is behind the vehicle, e.g., often used | | | for driver display when the vehicle is in reverse. | - | | Also known as rearview, reverse, etc. | + | | Also known as rearview, reverse, rear visibility, | + | | etc. | | | | | left-rear | Shows view to the left and behind (e.g., left side | | | rear-view mirror or blind spot view) | | | | | right-rear | Shows view to the right and behind (e.g., right | | | side rear-view mirror or blind spot view) | | | | | forward | Shows what is in front of the vehicle | | | | | rear-wide | Shows what is behind vehicle (e.g., used by rear- | @@ -1710,257 +1613,121 @@ | | | | lane | Used by systems to identify road lane and/or | | | monitor vehicle's position within lane | | | | | interior | Shows the interior (e.g., driver) | | | | | night-front | Night-vision view of what is in front of the | | | vehicle | +-------------+-----------------------------------------------------+ - Table 7: eCall Camera ID Registry Initial Values - -13. eCall Control Block Schema - - This section presents an XML schema of the eCall control block after - applying the extensions defined in this document. Note that the text - is normative; this schema is informative. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - conditionally - mandatory when @success='false" - to indicate reason code for a - failure - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Figure 12: eCall Control Block Schema + Table 5: Camera ID Registry Initial Values -14. Contributors +16. Acknowledgements - We would like to thank Ulrich Dietz for his help with earlier - versions of the original version of this document. + We would like to thank Christer Holmberg for his suggestions; Michael + Montag, Arnoud van Wijk, Ban Al-Bakri, Wes George, Gunnar Hellstrom, + and Rex Buddenberg for their feedback; and Ulrich Dietz for his help + with earlier versions of the original version of this document. -15. Acknowledgements +17. Changes from Previous Versions - We would like to thank Michael Montag, Arnoud van Wijk, Ban Al-Bakri, - Wes George, Gunnar Hellstrom, and Rex Buddenberg for their feedback. +17.1. Changes from draft-ietf-08 to draft-ietf-09 -16. Changes from Previous Versions + o Added INFO package registration for eCall.VEDS + o Moved element and other extension points back to + eCall document so that extension points are in base spec (and also + to get XML schema to compile) + o Text changes for clarification. -16.1. Changes from draft-ietf-07 to draft-ietf-08 +17.2. Changes from draft-ietf-07 to draft-ietf-08 o Moved much of the metadata/control object from [I-D.ietf-ecrit-ecall] to this document as extensions o Editorial clarifications and simplifications o Moved "Call Routing" to be a subsection of "Call Setup" o Deleted "Profile" section and moved some of its text into "Introduction" -16.2. Changes from draft-ietf-06 to draft-ietf-07 +17.3. Changes from draft-ietf-06 to draft-ietf-07 o Minor editorial changes -16.3. Changes from draft-ietf-05 to draft-ietf-06 +17.4. Changes from draft-ietf-05 to draft-ietf-06 o Added clarifying text regarding signed and encrypted data o Additional informative text in "Migration to Next-Generation" section o Additional clarifying text regarding security and privacy. -16.4. Changes from draft-ietf-04 to draft-ietf-05 +17.5. Changes from draft-ietf-04 to draft-ietf-05 o Reworded security text in main document and in MIME registration for the VEDS object -16.5. Changes from draft-ietf-03 to draft-ietf-04 +17.6. Changes from draft-ietf-03 to draft-ietf-04 o Added example VEDS object o Additional clarifications and corrections o Removed references from Abstract o Moved Document Scope section to follow Introduction -16.6. Changes from draft-ietf-02 to draft-ietf-03 +17.7. Changes from draft-ietf-02 to draft-ietf-03 o Additional clarifications and corrections -16.7. Changes from draft-ietf-01 to draft-ietf-02 +17.8. Changes from draft-ietf-01 to draft-ietf-02 o This document now refers to [I-D.ietf-ecrit-ecall] for technical aspects including the service URN; this document no longer proposes a unique service URN for non-eCall NG-ACN calls; the same service URN is now used for all NG-ACN calls including NG-eCall and non-eCall o Added discussion of an NG-ACN call placed to a PSAP that doesn't support it o Minor wording improvements and clarifications -16.8. Changes from draft-ietf-00 to draft-ietf-01 +17.9. Changes from draft-ietf-00 to draft-ietf-01 o Added further discussion of test calls o Added further clarification to the document scope o Mentioned that multi-region vehicles may need to support other crash notification specifications such as eCall o Minor wording improvements and clarifications -16.9. Changes from draft-gellens-02 to draft-ietf-00 +17.10. Changes from draft-gellens-02 to draft-ietf-00 o Renamed from draft-gellens- to draft-ietf- o Added text to Introduction to clarify that during a CS ACN, the PSAP call taker usually needs to listen to the data and transcribe it -16.10. Changes from draft-gellens-01 to -02 +17.11. Changes from draft-gellens-01 to -02 o Fixed case of 'EmergencyCallData', in accordance with changes to - [I-D.ietf-ecrit-additional-data] + [RFC7852] -16.11. Changes from draft-gellens-00 to -01 +17.12. Changes from draft-gellens-00 to -01 o Now using 'EmergencyCallData' for purpose parameter values and - MIME subtypes, in accordance with changes to - [I-D.ietf-ecrit-additional-data] + MIME subtypes, in accordance with changes to [RFC7852] o Added reference to RFC 6443 o Fixed bug that caused Figure captions to not appear -17. References - -17.1. Normative References +18. References - [I-D.ietf-ecrit-additional-data] - Gellens, R., Rosen, B., Tschofenig, H., Marshall, R., and - J. Winterbottom, "Additional Data Related to an Emergency - Call", draft-ietf-ecrit-additional-data-38 (work in - progress), April 2016. +18.1. Normative References [I-D.ietf-ecrit-ecall] Gellens, R. and H. Tschofenig, "Next-Generation Pan- - European eCall", draft-ietf-ecrit-ecall-07 (work in - progress), February 2016. + European eCall", draft-ietf-ecrit-ecall-10 (work in + progress), July 2016. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media Types", RFC 3023, DOI 10.17487/RFC3023, January 2001, . @@ -1997,39 +1764,49 @@ [RFC6443] Rosen, B., Schulzrinne, H., Polk, J., and A. Newton, "Framework for Emergency Calling Using Internet Multimedia", RFC 6443, DOI 10.17487/RFC6443, December 2011, . [RFC6881] Rosen, B. and J. Polk, "Best Current Practice for Communications Services in Support of Emergency Calling", BCP 181, RFC 6881, DOI 10.17487/RFC6881, March 2013, . + [RFC7852] Gellens, R., Rosen, B., Tschofenig, H., Marshall, R., and + J. Winterbottom, "Additional Data Related to an Emergency + Call", RFC 7852, DOI 10.17487/RFC7852, July 2016, + . + [VEDS] Advanced Automatic Crash Notification (AACN) Joint APCO/ NENA Data Standardization Workgroup, , "Vehicular Emergency Data Set (VEDS) version 3", July 2012, . -17.2. Informative references +18.2. Informative references [RFC5012] Schulzrinne, H. and R. Marshall, Ed., "Requirements for Emergency Context Resolution with Internet Technologies", RFC 5012, DOI 10.17487/RFC5012, January 2008, . [RFC5069] Taylor, T., Ed., Tschofenig, H., Schulzrinne, H., and M. Shanmugam, "Security Threats and Requirements for Emergency Call Marking and Mapping", RFC 5069, DOI 10.17487/RFC5069, January 2008, . + [RFC6086] Holmberg, C., Burger, E., and H. Kaplan, "Session + Initiation Protocol (SIP) INFO Method and Package + Framework", RFC 6086, DOI 10.17487/RFC6086, January 2011, + . + [RFC7378] Tschofenig, H., Schulzrinne, H., and B. Aboba, Ed., "Trustworthy Location", RFC 7378, DOI 10.17487/RFC7378, December 2014, . [triage-2008] National Center for Injury Prevention and Control, and Centers for Disease Control and Prevention, "Recommendations from the Expert Panel: Advanced Automatic Collision Notification and Triage of the Injured Patient", 2008, . @@ -2040,29 +1817,26 @@ for field triage of injured patients: recommendations of the National Expert Panel on Field Triage", January 2012, . Authors' Addresses Randall Gellens - Consultant - 6755 Mira Mesa Blvd 123-151 - San Diego 92121 - US + Core Technology Consulting Email: rg+ietf@randy.pensive.org - Brian Rosen NeuStar, Inc. 470 Conrad Dr Mars, PA 16046 US Email: br@brianrosen.net + Hannes Tschofenig Individual Email: Hannes.Tschofenig@gmx.net URI: http://www.tschofenig.priv.at