draft-ietf-hip-rfc4423-bis-19.txt   draft-ietf-hip-rfc4423-bis-20.txt 
Network Working Group R. Moskowitz, Ed. Network Working Group R. Moskowitz, Ed.
Internet-Draft HTT Consulting Internet-Draft HTT Consulting
Obsoletes: 4423 (if approved) M. Komu Obsoletes: 4423 (if approved) M. Komu
Intended status: Informational Ericsson Intended status: Informational Ericsson
Expires: August 31, 2018 February 27, 2018 Expires: August 18, 2019 February 14, 2019
Host Identity Protocol Architecture Host Identity Protocol Architecture
draft-ietf-hip-rfc4423-bis-19 draft-ietf-hip-rfc4423-bis-20
Abstract Abstract
This memo describes a new namespace, the Host Identity namespace, and This memo describes the Host Identity (HI) namespace, that provides a
a new protocol layer, the Host Identity Protocol, between the cryptographic namespace to applications, and the associated protocol
internetworking and transport layers. Herein are presented the layer, the Host Identity Protocol, located between the
internetworking and transport layers, that supports end-host
mobility, multihoming and NAT traversal. Herein are presented the
basics of the current namespaces, their strengths and weaknesses, and basics of the current namespaces, their strengths and weaknesses, and
how a new namespace will add completeness to them. The roles of this how a HI namespace will add completeness to them. The roles of the
new namespace in the protocols are defined. HI namespace in the protocols are defined.
This document obsoletes RFC 4423 and addresses the concerns raised by This document obsoletes RFC 4423 and addresses the concerns raised by
the IESG, particularly that of crypto agility. It incorporates the IESG, particularly that of crypto agility. The section on
security considerations describe also measures against flooding
attacks, usage of identities in access control lists, weaker types of
identifiers and trust on first use. This document incorporates
lessons learned from the implementations of RFC 5201 and goes further lessons learned from the implementations of RFC 5201 and goes further
to explain how HIP works as a secure signaling channel. to explain how HIP works as a secure signaling channel.
Status of This Memo Status of This Memo
This Internet-Draft is submitted in full conformance with the This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79. provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet- working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/. Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
This Internet-Draft will expire on August 31, 2018. This Internet-Draft will expire on August 18, 2019.
Copyright Notice Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as the Trust Legal Provisions and are provided without warranty as
skipping to change at page 2, line 30 skipping to change at page 2, line 38
not be created outside the IETF Standards Process, except to format not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other it for publication as an RFC or to translate it into languages other
than English. than English.
Table of Contents Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1. Terms common to other documents . . . . . . . . . . . . . . 4 2.1. Terms common to other documents . . . . . . . . . . . . . . 4
2.2. Terms specific to this and other HIP documents . . . . . . 5 2.2. Terms specific to this and other HIP documents . . . . . . 5
3. Background . . . . . . . . . . . . . . . . . . . . . . . . . 6 3. Background . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1. A desire for a namespace for computing platforms . . . . . 7 3.1. A desire for a namespace for computing platforms . . . . . 8
4. Host Identity namespace . . . . . . . . . . . . . . . . . . . 9 4. Host Identity namespace . . . . . . . . . . . . . . . . . . . 9
4.1. Host Identifiers . . . . . . . . . . . . . . . . . . . . . 10 4.1. Host Identifiers . . . . . . . . . . . . . . . . . . . . . 10
4.2. Host Identity Hash (HIH) . . . . . . . . . . . . . . . . . 10 4.2. Host Identity Hash (HIH) . . . . . . . . . . . . . . . . . 11
4.3. Host Identity Tag (HIT) . . . . . . . . . . . . . . . . . . 11 4.3. Host Identity Tag (HIT) . . . . . . . . . . . . . . . . . . 11
4.4. Local Scope Identifier (LSI) . . . . . . . . . . . . . . . 11 4.4. Local Scope Identifier (LSI) . . . . . . . . . . . . . . . 12
4.5. Storing Host Identifiers in directories . . . . . . . . . . 12 4.5. Storing Host Identifiers in directories . . . . . . . . . . 13
5. New stack architecture . . . . . . . . . . . . . . . . . . . 13 5. New stack architecture . . . . . . . . . . . . . . . . . . . 14
5.1. On the multiplicity of identities . . . . . . . . . . . . . 14 5.1. On the multiplicity of identities . . . . . . . . . . . . . 15
6. Control plane . . . . . . . . . . . . . . . . . . . . . . . . 15 6. Control plane . . . . . . . . . . . . . . . . . . . . . . . . 16
6.1. Base exchange . . . . . . . . . . . . . . . . . . . . . . . 16 6.1. Base exchange . . . . . . . . . . . . . . . . . . . . . . . 16
6.2. End-host mobility and multi-homing . . . . . . . . . . . . 16 6.2. End-host mobility and multi-homing . . . . . . . . . . . . 17
6.3. Rendezvous mechanism . . . . . . . . . . . . . . . . . . . 17 6.3. Rendezvous mechanism . . . . . . . . . . . . . . . . . . . 18
6.4. Relay mechanism . . . . . . . . . . . . . . . . . . . . . . 17 6.4. Relay mechanism . . . . . . . . . . . . . . . . . . . . . . 18
6.5. Termination of the control plane . . . . . . . . . . . . . 18 6.5. Termination of the control plane . . . . . . . . . . . . . 18
7. Data plane . . . . . . . . . . . . . . . . . . . . . . . . . 18 7. Data plane . . . . . . . . . . . . . . . . . . . . . . . . . 18
8. HIP and NATs . . . . . . . . . . . . . . . . . . . . . . . . 19 8. HIP and NATs . . . . . . . . . . . . . . . . . . . . . . . . 19
8.1. HIP and Upper-layer checksums . . . . . . . . . . . . . . . 19 8.1. HIP and Upper-layer checksums . . . . . . . . . . . . . . . 20
9. Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . 20 9. Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10. HIP policies . . . . . . . . . . . . . . . . . . . . . . . . 20 10. HIP policies . . . . . . . . . . . . . . . . . . . . . . . . 21
11. Design considerations . . . . . . . . . . . . . . . . . . . . 21 11. Security considerations . . . . . . . . . . . . . . . . . . . 21
11.1. Benefits of HIP . . . . . . . . . . . . . . . . . . . . . 21 11.1. MiTM Attacks . . . . . . . . . . . . . . . . . . . . . . . 22
11.2. Drawbacks of HIP . . . . . . . . . . . . . . . . . . . . . 24 11.2. Protection against flooding attacks . . . . . . . . . . . 23
11.3. Deployment and adoption considerations . . . . . . . . . . 25 11.3. HITs used in ACLs . . . . . . . . . . . . . . . . . . . . 24
11.3.1. Deployment analysis . . . . . . . . . . . . . . . . . . 25 11.4. Alternative HI considerations . . . . . . . . . . . . . . 25
11.3.2. HIP in 802.15.4 networks . . . . . . . . . . . . . . . . 26 11.5. Trust On First Use . . . . . . . . . . . . . . . . . . . . 25
11.3.3. HIP and Internet of Things . . . . . . . . . . . . . . . 26 12. IANA considerations . . . . . . . . . . . . . . . . . . . . . 28
11.4. Answers to NSRG questions . . . . . . . . . . . . . . . . 28 13. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 28
12. Security considerations . . . . . . . . . . . . . . . . . . . 29 14. Changes from RFC 4423 . . . . . . . . . . . . . . . . . . . . 29
12.1. MiTM Attacks . . . . . . . . . . . . . . . . . . . . . . . 29 15. References . . . . . . . . . . . . . . . . . . . . . . . . . 29
12.2. Protection against flooding attacks . . . . . . . . . . . 31 15.1. Normative References . . . . . . . . . . . . . . . . . . . 29
12.3. HITs used in ACLs . . . . . . . . . . . . . . . . . . . . 31 15.2. Informative references . . . . . . . . . . . . . . . . . . 31
12.4. Alternative HI considerations . . . . . . . . . . . . . . 33 Appendix A. Design considerations . . . . . . . . . . . . . . . 38
13. IANA considerations . . . . . . . . . . . . . . . . . . . . . 33 A.1. Benefits of HIP . . . . . . . . . . . . . . . . . . . . . . 38
14. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 33 A.2. Drawbacks of HIP . . . . . . . . . . . . . . . . . . . . . 41
15. Changes from RFC 4423 . . . . . . . . . . . . . . . . . . . . 34 A.3. Deployment and adoption considerations . . . . . . . . . . 43
16. References . . . . . . . . . . . . . . . . . . . . . . . . . 34 A.3.1. Deployment analysis . . . . . . . . . . . . . . . . . . . 43
16.1. Normative References . . . . . . . . . . . . . . . . . . . 34 A.3.2. HIP in 802.15.4 networks . . . . . . . . . . . . . . . . 44
16.2. Informative references . . . . . . . . . . . . . . . . . . 35 A.3.3. HIP and Internet of Things . . . . . . . . . . . . . . . 44
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 42 A.3.4. Infrastructure Applications . . . . . . . . . . . . . . . 46
A.3.5. Management of Identities in a Commercial Product . . . . 47
A.4. Answers to NSRG questions . . . . . . . . . . . . . . . . . 48
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 50
1. Introduction 1. Introduction
The Internet has two important global namespaces: Internet Protocol The Internet has two important global namespaces: Internet Protocol
(IP) addresses and Domain Name Service (DNS) names. These two (IP) addresses and Domain Name Service (DNS) names. These two
namespaces have a set of features and abstractions that have powered namespaces have a set of features and abstractions that have powered
the Internet to what it is today. They also have a number of the Internet to what it is today. They also have a number of
weaknesses. Basically, since they are all we have, we try and do too weaknesses. Basically, since they are all we have, we try to do too
much with them. Semantic overloading and functionality extensions much with them. Semantic overloading and functionality extensions
have greatly complicated these namespaces. have greatly complicated these namespaces.
The proposed Host Identity namespace fills an important gap between The proposed Host Identity namespace is also a global namespace, and
the IP and DNS namespaces. A Host Identity conceptually refers to a it fills an important gap between the IP and DNS namespaces. A Host
computing platform, and there may be multiple such Host Identities Identity conceptually refers to a computing platform, and there may
per computing platform (because the platform may wish to present a be multiple such Host Identities per computing platform (because the
different identity to different communicating peers). The Host platform may wish to present a different identity to different
Identity namespace consists of Host Identifiers (HI). There is communicating peers). The Host Identity namespace consists of Host
exactly one Host Identifier for each Host Identity (although there Identifiers (HI). There is exactly one Host Identifier for each Host
may be transient periods of time such as key replacement when more Identity (although there may be transient periods of time such as key
than one identifier may be active). While this text later talks replacement when more than one identifier may be active). While this
about non-cryptographic Host Identifiers, the architecture focuses on text later talks about non-cryptographic Host Identifiers, the
the case in which Host Identifiers are cryptographic in nature. architecture focuses on the case in which Host Identifiers are
Specifically, the Host Identifier is the public key of an asymmetric cryptographic in nature. Specifically, the Host Identifier is the
key-pair. Each Host Identity uniquely identifies a single host, public key of an asymmetric key-pair. Each Host Identity uniquely
i.e., no two hosts have the same Host Identity. If two or more identifies a single host, i.e., no two hosts have the same Host
computing platforms have the same Host Identifier, then they are Identity. If two or more computing platforms have the same Host
instantiating a distributed host. The Host Identifier can either be Identifier, then they are instantiating a distributed host. The Host
public (e.g. published in the DNS), or unpublished. Client systems Identifier can either be public (e.g., published in the DNS), or
will tend to have both public and unpublished Host Identifiers. unpublished. Client systems will tend to have both public and
unpublished Host Identifiers.
There is a subtle but important difference between Host Identities There is a subtle but important difference between Host Identities
and Host Identifiers. An Identity refers to the abstract entity that and Host Identifiers. An Identity refers to the abstract entity that
is identified. An Identifier, on the other hand, refers to the is identified. An Identifier, on the other hand, refers to the
concrete bit pattern that is used in the identification process. concrete bit pattern that is used in the identification process.
Although the Host Identifiers could be used in many authentication Although the Host Identifiers could be used in many authentication
systems, such as IKEv2 [RFC4306], the presented architecture systems, such as IKEv2 [RFC4306], the presented architecture
introduces a new protocol, called the Host Identity Protocol (HIP), introduces a new protocol, called the Host Identity Protocol (HIP),
and a cryptographic exchange, called the HIP base exchange; see also and a cryptographic exchange, called the HIP base exchange; see also
Section 6. HIP provides for limited forms of trust between systems, Section 6. HIP provides for limited forms of trust between systems,
enhance mobility, multi-homing and dynamic IP renumbering, aid in enhances mobility, multi-homing and dynamic IP renumbering, aids in
protocol translation / transition, and reduce certain types of protocol translation / transition, and reduces certain types of
denial-of-service (DoS) attacks. denial-of-service (DoS) attacks.
When HIP is used, the actual payload traffic between two HIP hosts is When HIP is used, the actual payload traffic between two HIP hosts is
typically, but not necessarily, protected with ESP [RFC7402]. The typically, but not necessarily, protected with ESP [RFC7402]. The
Host Identities are used to create the needed ESP Security Host Identities are used to create the needed ESP Security
Associations (SAs) and to authenticate the hosts. When ESP is used, Associations (SAs) and to authenticate the hosts. When ESP is used,
the actual payload IP packets do not differ in any way from standard the actual payload IP packets do not differ in any way from standard
ESP protected IP packets. ESP protected IP packets.
Much has been learned about HIP [RFC6538] since [RFC4423] was Much has been learned about HIP [RFC6538] since [RFC4423] was
skipping to change at page 5, line 10 skipping to change at page 5, line 10
2. Terminology 2. Terminology
2.1. Terms common to other documents 2.1. Terms common to other documents
+---------------+---------------------------------------------------+ +---------------+---------------------------------------------------+
| Term | Explanation | | Term | Explanation |
+---------------+---------------------------------------------------+ +---------------+---------------------------------------------------+
| Public key | The public key of an asymmetric cryptographic key | | Public key | The public key of an asymmetric cryptographic key |
| | pair. Used as a publicly known identifier for | | | pair. Used as a publicly known identifier for |
| | cryptographic identity authentication. Public is | | | cryptographic identity authentication. Public is |
| | a a relative term here, ranging from "known to | | | a relative term here, ranging from "known to |
| | peers only" to "known to the world." | | | peers only" to "known to the world." |
| Private key | The private or secret key of an asymmetric | | Private key | The private or secret key of an asymmetric |
| | cryptographic key pair. Assumed to be known only | | | cryptographic key pair. Assumed to be known only |
| | to the party identified by the corresponding | | | to the party identified by the corresponding |
| | public key. Used by the identified party to | | | public key. Used by the identified party to |
| | authenticate its identity to other parties. | | | authenticate its identity to other parties. |
| Public key | An asymmetric cryptographic key pair consisting | | Public key | An asymmetric cryptographic key pair consisting |
| pair | of public and private keys. For example, Rivest- | | pair | of public and private keys. For example, Rivest- |
| | Shamir-Adleman (RSA), Digital Signature Algorithm | | | Shamir-Adleman (RSA), Digital Signature Algorithm |
| | (DSA) and Elliptic Curve DSA (ECDSA) key pairs | | | (DSA) and Elliptic Curve DSA (ECDSA) key pairs |
skipping to change at page 6, line 11 skipping to change at page 6, line 11
to other terms. This is due to the succinct nature of the to other terms. This is due to the succinct nature of the
definitions. See the text elsewhere in this document and the base definitions. See the text elsewhere in this document and the base
specification [RFC7401] for more elaborate explanations. specification [RFC7401] for more elaborate explanations.
+---------------+---------------------------------------------------+ +---------------+---------------------------------------------------+
| Term | Explanation | | Term | Explanation |
+---------------+---------------------------------------------------+ +---------------+---------------------------------------------------+
| Computing | An entity capable of communicating and computing, | | Computing | An entity capable of communicating and computing, |
| platform | for example, a computer. See the definition of | | platform | for example, a computer. See the definition of |
| | 'End-point', above. | | | 'End-point', above. |
| HIP base | A cryptographic protocol; see also Section 6. | | | |
| HIP base | A cryptographic protocol; see also Section 6 |
| exchange | | | exchange | |
| | |
| HIP packet | An IP packet that carries a 'Host Identity | | HIP packet | An IP packet that carries a 'Host Identity |
| | Protocol' message. | | | Protocol' message. |
| | |
| Host Identity | An abstract concept assigned to a 'computing | | Host Identity | An abstract concept assigned to a 'computing |
| | platform'. See 'Host Identifier', below. | | | platform'. See 'Host Identifier', below. |
| | |
| Host | A public key used as a name for a Host Identity. | | Host | A public key used as a name for a Host Identity. |
| Identifier | | | Identifier | |
| | |
| Host Identity | A name space formed by all possible Host | | Host Identity | A name space formed by all possible Host |
| namespace | Identifiers. | | namespace | Identifiers. |
| | |
| Host Identity | A protocol used to carry and authenticate Host | | Host Identity | A protocol used to carry and authenticate Host |
| Protocol | Identifiers and other information. | | Protocol | Identifiers and other information. |
| | |
| Host Identity | The cryptographic hash used in creating the Host | | Host Identity | The cryptographic hash used in creating the Host |
| Hash | Identity Tag from the Host Identifier. | | Hash | Identity Tag from the Host Identifier. |
| | |
| Host Identity | A 128-bit datum created by taking a cryptographic | | Host Identity | A 128-bit datum created by taking a cryptographic |
| Tag | hash over a Host Identifier plus bits to identify | | Tag | hash over a Host Identifier plus bits to identify |
| | which hash used. | | | which hash used. |
| | |
| Local Scope | A 32-bit datum denoting a Host Identity. | | Local Scope | A 32-bit datum denoting a Host Identity. |
| Identifier | | | Identifier | |
| | |
| Public Host | A published or publicly known Host Identifier | | Public Host | A published or publicly known Host Identifier |
| Identifier | used as a public name for a Host Identity, and | | Identifier | used as a public name for a Host Identity, and |
| and Identity | the corresponding Identity. | | and Identity | the corresponding Identity. |
| | |
| Unpublished | A Host Identifier that is not placed in any | | Unpublished | A Host Identifier that is not placed in any |
| Host | public directory, and the corresponding Host | | Host | public directory, and the corresponding Host |
| Identifier | Identity. Unpublished Host Identities are | | Identifier | Identity. Unpublished Host Identities are |
| and Identity | typically short lived in nature, being often | | and Identity | typically short lived in nature, being often |
| | replaced and possibly used just once. | | | replaced and possibly used just once. |
| | |
| Rendezvous | A mechanism used to locate mobile hosts based on | | Rendezvous | A mechanism used to locate mobile hosts based on |
| Mechanism | their HIT. | | Mechanism | their HIT. |
+---------------+---------------------------------------------------+ +---------------+---------------------------------------------------+
3. Background 3. Background
The Internet is built from three principal components: computing The Internet is built from three principal components: computing
platforms (end-points), packet transport (i.e., internetworking) platforms (end-points), packet transport (i.e., internetworking)
infrastructure, and services (applications). The Internet exists to infrastructure, and services (applications). The Internet exists to
service two principal components: people and robotic services service two principal components: people and robotic services
skipping to change at page 7, line 31 skipping to change at page 7, line 41
number of interfaces use ephemeral and/or non-unique IP addresses. number of interfaces use ephemeral and/or non-unique IP addresses.
That is, every time an interface is connected to the network, it is That is, every time an interface is connected to the network, it is
assigned an IP address. assigned an IP address.
In the current Internet, the transport layers are coupled to the IP In the current Internet, the transport layers are coupled to the IP
addresses. Neither can evolve separately from the other. IPng addresses. Neither can evolve separately from the other. IPng
deliberations were strongly shaped by the decision that a deliberations were strongly shaped by the decision that a
corresponding TCPng would not be created. corresponding TCPng would not be created.
There are three critical deficiencies with the current namespaces. There are three critical deficiencies with the current namespaces.
Firstly, dynamic readdressing cannot be directly managed. Secondly, Firstly, establishing initial contact and sustaining of data flows
confidentiality is not provided in a consistent, trustable manner. between two hosts can be challenging due to private address realms
Finally, authentication for systems and datagrams is not provided. and ephemeral nature of addresses. Secondly, confidentiality is not
All of these deficiencies arise because computing platforms are not provided in a consistent, trustable manner. Finally, authentication
well named with the current namespaces. for systems and datagrams is not provided. All of these deficiencies
arise because computing platforms are not well named with the current
namespaces.
3.1. A desire for a namespace for computing platforms 3.1. A desire for a namespace for computing platforms
An independent namespace for computing platforms could be used in An independent namespace for computing platforms could be used in
end-to-end operations independent of the evolution of the end-to-end operations independent of the evolution of the
internetworking layer and across the many internetworking layers. internetworking layer and across the many internetworking layers.
This could support rapid readdressing of the internetworking layer This could support rapid readdressing of the internetworking layer
because of mobility, rehoming, or renumbering. because of mobility, rehoming, or renumbering.
If the namespace for computing platforms is based on public-key If the namespace for computing platforms is based on public-key
skipping to change at page 8, line 22 skipping to change at page 8, line 38
Block, TCB). This replacement can be handled transparently for Block, TCB). This replacement can be handled transparently for
legacy applications as the LSIs and HITs are compatible with IPv4 legacy applications as the LSIs and HITs are compatible with IPv4
and IPv6 addresses [RFC5338]. However, HIP-aware applications and IPv6 addresses [RFC5338]. However, HIP-aware applications
require some modifications from the developers, who may employ require some modifications from the developers, who may employ
networking API extensions for HIP [RFC6317]. networking API extensions for HIP [RFC6317].
o The introduction of the namespace should not mandate any o The introduction of the namespace should not mandate any
administrative infrastructure. Deployment must come from the administrative infrastructure. Deployment must come from the
bottom up, in a pairwise deployment. bottom up, in a pairwise deployment.
o The names should have a fixed length representation, for easy o The names should have a fixed-length representation, for easy
inclusion in datagram headers and existing programming interfaces inclusion in datagram headers and existing programming interfaces
(e.g the TCB). (e.g the TCB).
o Using the namespace should be affordable when used in protocols. o Using the namespace should be affordable when used in protocols.
This is primarily a packet size issue. There is also a This is primarily a packet size issue. There is also a
computational concern in affordability. computational concern in affordability.
o Name collisions should be avoided as much as possible. The o Name collisions should be avoided as much as possible. The
mathematics of the birthday paradox can be used to estimate the mathematics of the birthday paradox can be used to estimate the
chance of a collision in a given population and hash space. In chance of a collision in a given population and hash space. In
general, for a random hash space of size n bits, we would expect general, for a random hash space of size n bits, we would expect
to obtain a collision after approximately 1.2*sqrt(2**n) hashes to obtain a collision after approximately 1.2*sqrt(2**n) hashes
were obtained. For 64 bits, this number is roughly 4 billion. A were obtained. For 64 bits, this number is roughly 4 billion. A
hash size of 64 bits may be too small to avoid collisions in a hash size of 64 bits may be too small to avoid collisions in a
large population; for example, there is a 1% chance of collision large population; for example, there is a 1% chance of collision
in a population of 640M. For 100 bits (or more), we would not in a population of 640M. For 100 bits (or more), we would not
expect a collision until approximately 2**50 (1 quadrillion) expect a collision until approximately 2**50 (1 quadrillion)
hashes were generated. hashes were generated. With the currently used hash size of 96
bits [RFC7343], the figure is 2**48 (281 trillions).
o The names should have a localized abstraction so that they can be o The names should have a localized abstraction so that they can be
used in existing protocols and APIs. used in existing protocols and APIs.
o It must be possible to create names locally. When such names are o It must be possible to create names locally. When such names are
not published, this can provide anonymity at the cost of making not published, this can provide anonymity at the cost of making
resolvability very difficult. resolvability very difficult.
o The namespace should provide authentication services. o The namespace should provide authentication services.
o The names should be long lived, but replaceable at any time. This o The names should be long-lived, but replaceable at any time. This
impacts access control lists; short lifetimes will tend to result impacts access control lists; short lifetimes will tend to result
in tedious list maintenance or require a namespace infrastructure in tedious list maintenance or require a namespace infrastructure
for central control of access lists. for central control of access lists.
In this document, a new namespace approaching these ideas is called In this document, the namespace approaching these ideas is called the
the Host Identity namespace. Using Host Identities requires its own Host Identity namespace. Using Host Identities requires its own
protocol layer, the Host Identity Protocol, between the protocol layer, the Host Identity Protocol, between the
internetworking and transport layers. The names are based on public- internetworking and transport layers. The names are based on public-
key cryptography to supply authentication services. Properly key cryptography to supply authentication services. Properly
designed, it can deliver all of the above stated requirements. designed, it can deliver all of the above-stated requirements.
4. Host Identity namespace 4. Host Identity namespace
A name in the Host Identity namespace, a Host Identifier (HI), A name in the Host Identity namespace, a Host Identifier (HI),
represents a statistically globally unique name for naming any system represents a statistically globally unique name for naming any system
with an IP stack. This identity is normally associated with, but not with an IP stack. This identity is normally associated with, but not
limited to, an IP stack. A system can have multiple identities, some limited to, an IP stack. A system can have multiple identities, some
'well known', some unpublished or 'anonymous'. A system may self- 'well known', some unpublished or 'anonymous'. A system may self-
assert its own identity, or may use a third-party authenticator like assert its own identity, or may use a third-party authenticator like
DNSSEC [RFC2535], PGP, or X.509 to 'notarize' the identity assertion DNSSEC [RFC2535], PGP, or X.509 to 'notarize' the identity assertion
to another namespace. It is expected that the Host Identifiers will to another namespace.
initially be authenticated with DNSSEC and that all implementations
will support DNSSEC as a minimal baseline.
In theory, any name that can claim to be 'statistically globally In theory, any name that can claim to be 'statistically globally
unique' may serve as a Host Identifier. In the HIP architecture, the unique' may serve as a Host Identifier. In the HIP architecture, the
public key of a private-public key pair has been chosen as the Host public key of a private-public key pair has been chosen as the Host
Identifier because it can be self managed and it is computationally Identifier because it can be self-managed and it is computationally
difficult to forge. As specified in the Host Identity Protocol difficult to forge. As specified in the Host Identity Protocol
[RFC7401] specification, a public-key-based HI can authenticate the [RFC7401] specification, a public-key-based HI can authenticate the
HIP packets and protect them from man-in-the-middle attacks. Since HIP packets and protect them from man-in-the-middle attacks. Since
authenticated datagrams are mandatory to provide much of HIP's authenticated datagrams are mandatory to provide much of HIP's
denial-of-service protection, the Diffie-Hellman exchange in HIP base denial-of-service protection, the Diffie-Hellman exchange in HIP base
exchange has to be authenticated. Thus, only public-key HI and exchange has to be authenticated. Thus, only public-key HI and
authenticated HIP messages are supported in practice. authenticated HIP messages are supported in practice.
In this document, the non-cryptographic forms of HI and HIP are In this document, some non-cryptographic forms of HI and HIP are
presented to complete the theory of HI, but they should not be referenced, but cryptographic forms SHOULD be preferred because they
implemented as they could produce worse denial-of-service attacks are more secure than their non-cryptographic counterparts. There has
than the Internet has without Host Identity. There has been past been past research in challenge puzzles to use non-cryptographic HI,
research in challenge puzzles to use non-cryptographic HI, for Radio for Radio Frequency IDentification (RFID), in an HIP exchange
Frequency IDentification (RFID), in an HIP exchange tailored to the tailored to the workings of such challenges (as described further in
workings of such challenges (as described further in [urien-rfid] and [urien-rfid] and [urien-rfid-draft]).
[urien-rfid-draft]).
4.1. Host Identifiers 4.1. Host Identifiers
Host Identity adds two main features to Internet protocols. The Host Identity adds two main features to Internet protocols. The
first is a decoupling of the internetworking and transport layers; first is a decoupling of the internetworking and transport layers;
see Section 5. This decoupling will allow for independent evolution see Section 5. This decoupling will allow for independent evolution
of the two layers. Additionally, it can provide end-to-end services of the two layers. Additionally, it can provide end-to-end services
over multiple internetworking realms. The second feature is host over multiple internetworking realms. The second feature is host
authentication. Because the Host Identifier is a public key, this authentication. Because the Host Identifier is a public key, this
key can be used for authentication in security protocols like ESP. key can be used for authentication in security protocols like ESP.
skipping to change at page 10, line 47 skipping to change at page 11, line 9
or network layers. The corresponding Host Identifiers (public keys) or network layers. The corresponding Host Identifiers (public keys)
may be stored in various DNS or other directories as identified may be stored in various DNS or other directories as identified
elsewhere in this document, and they are passed in the HIP base elsewhere in this document, and they are passed in the HIP base
exchange. A Host Identity Tag (HIT) is used in other protocols to exchange. A Host Identity Tag (HIT) is used in other protocols to
represent the Host Identity. Another representation of the Host represent the Host Identity. Another representation of the Host
Identities, the Local Scope Identifier (LSI), can also be used in Identities, the Local Scope Identifier (LSI), can also be used in
protocols and APIs. protocols and APIs.
4.2. Host Identity Hash (HIH) 4.2. Host Identity Hash (HIH)
The Host Identity Hash is the cryptographic hash algorithm used in The Host Identity Hash (HIH) is the cryptographic hash algorithm used
producing the HIT from the HI. It is also the hash used throughout in producing the HIT from the HI. It is also the hash used
the HIP protocol for consistency and simplicity. It is possible for throughout the HIP protocol for consistency and simplicity. It is
the two hosts in the HIP exchange to use different hash algorithms. possible for the two hosts in the HIP exchange to use different hash
algorithms.
Multiple HIHs within HIP are needed to address the moving target of Multiple HIHs within HIP are needed to address the moving target of
creation and eventual compromise of cryptographic hashes. This creation and eventual compromise of cryptographic hashes. This
significantly complicates HIP and offers an attacker an additional significantly complicates HIP and offers an attacker an additional
downgrade attack that is mitigated in the HIP protocol [RFC7401]. downgrade attack that is mitigated in the HIP protocol [RFC7401].
4.3. Host Identity Tag (HIT) 4.3. Host Identity Tag (HIT)
A Host Identity Tag is a 128-bit representation for a Host Identity. A Host Identity Tag (HIT) is a 128-bit representation for a Host
Due to its size, it is suitable to be used in the existing sockets Identity. Due to its size, it is suitable to be used in the existing
API in the place of IPv6 addresses (e.g. in sockaddr_in6 structure, sockets API in the place of IPv6 addresses (e.g., in sockaddr_in6
sin6_addr member) without modifying applications. It is created from structure, sin6_addr member) without modifying applications. It is
an HIH, an IPv6 prefix [RFC7343] and a hash identifier. There are created from an HIH, an IPv6 prefix [RFC7343] and a hash identifier.
two advantages of using the HIT over using the Host Identifier in There are two advantages of using the HIT over using the Host
protocols. Firstly, its fixed length makes for easier protocol Identifier in protocols. Firstly, its fixed length makes for easier
coding and also better manages the packet size cost of this protocol coding and also better manages the packet size cost of this
technology. Secondly, it presents the identity in a consistent technology. Secondly, it presents the identity in a consistent
format to the protocol independent of the cryptographic algorithms format to the protocol independent of the cryptographic algorithms
used. used.
In essence, the HIT is a hash over the public key. As such, two In essence, the HIT is a hash over the public key. As such, two
algorithms affect the generation of a HIT: the public-key algorithm algorithms affect the generation of a HIT: the public-key algorithm
of the HI and the used HIH. The two algorithms are encoded in the of the HI and the used HIH. The two algorithms are encoded in the
bit presentation of the HIT. As the two communicating parties may bit presentation of the HIT. As the two communicating parties may
support different algorithms, [RFC7401] defines the minimum set for support different algorithms, [RFC7401] defines the minimum set for
interoperability. For further interoperability, the responder may interoperability. For further interoperability, the responder may
skipping to change at page 11, line 42 skipping to change at page 12, line 5
matching HIH. matching HIH.
In the HIP packets, the HITs identify the sender and recipient of a In the HIP packets, the HITs identify the sender and recipient of a
packet. Consequently, a HIT should be unique in the whole IP packet. Consequently, a HIT should be unique in the whole IP
universe as long as it is being used. In the extremely rare case of universe as long as it is being used. In the extremely rare case of
a single HIT mapping to more than one Host Identity, the Host a single HIT mapping to more than one Host Identity, the Host
Identifiers (public keys) will make the final difference. If there Identifiers (public keys) will make the final difference. If there
is more than one public key for a given node, the HIT acts as a hint is more than one public key for a given node, the HIT acts as a hint
for the correct public key to use. for the correct public key to use.
Although it may be rare for an accidental collision to cause a single
HIT mapping to more than one Host Identity, it may be the case that
an attacker succeeds to find, by brute force or algorithmic weakness,
a second Host Identity hashing to the same HIT. This type of attack
is known as a preimage attack, and the resistance to finding a second
Host Identifier (public key) that hashes to the same HIT is called
second preimage resistance. Second preimage resistance in HIP is
based on the hash algorithm strength and the length of the hash
output used. Through HIPv2 [RFC7401], this resistance is 96 bits
(less than the 128 bit width of an IPv6 address field due to the
presence of the ORCHID prefix [RFC7343]). 96 bits of resistance was
considered acceptable strength during the design of HIP, but may
eventually be considered insufficient for the threat model of an
envisioned deployment. One possible mitigation would be to augment
the use of HITs in the deployment with the HIs themselves (and
mechanisms to securely bind the HIs to the HITs), so that the HI
becomes the final authority. It also may be possible to increase the
difficulty of brute force attack by making the generation of the HI
more computationally difficult, such as the hash extension approach
of SEND CGAs [RFC3972], although the HIP specifications through HIPv2
do not provide such a mechanism. Finally, deployments that do not
use ORCHIDs (such as certain types of overlay networks) might also
use the full 128-bit width of an IPv6 address field for the HIT.
4.4. Local Scope Identifier (LSI) 4.4. Local Scope Identifier (LSI)
An LSI is a 32-bit localized representation for a Host Identity. Due An LSI is a 32-bit localized representation for a Host Identity. Due
to its size, it is suitable to be used in the existing sockets API in to its size, it is suitable to be used in the existing sockets API in
the place of IPv4 addresses (e.g. in sockaddr_in structure, sin_addr the place of IPv4 addresses (e.g., in sockaddr_in structure, sin_addr
member) without modifying applications. The purpose of an LSI is to member) without modifying applications. The purpose of an LSI is to
facilitate using Host Identities in existing APIs for IPv4-based facilitate using Host Identities in existing APIs for IPv4-based
applications. LSIs are never transmitted on the wire; when an applications. LSIs are never transmitted on the wire; when an
application sends data using a pair of LSIs, the HIP layer (or application sends data using a pair of LSIs, the HIP layer (or
sockets handler) translates the LSIs to the corresponding HITs, and sockets handler) translates the LSIs to the corresponding HITs, and
vice versa for receiving of data. Besides facilitating HIP-based vice versa for receiving of data. Besides facilitating HIP-based
connectivity for legacy IPv4 applications, the LSIs are beneficial in connectivity for legacy IPv4 applications, the LSIs are beneficial in
two other scenarios [RFC6538]. two other scenarios [RFC6538].
In the first scenario, two IPv4-only applications are residing on two In the first scenario, two IPv4-only applications are residing on two
skipping to change at page 13, line 26 skipping to change at page 14, line 13
directly, while others may indirectly discover them through symbolic directly, while others may indirectly discover them through symbolic
host name (such as FQDN) look up from a directory. Even though Host host name (such as FQDN) look up from a directory. Even though Host
Identities can have a substantially longer lifetime associated with Identities can have a substantially longer lifetime associated with
them than routable IP addresses, directories may be a better approach them than routable IP addresses, directories may be a better approach
to manage the lifespan of Host Identities. For example, an LDAP- to manage the lifespan of Host Identities. For example, an LDAP-
based directory or DHT can be used for locally published identities based directory or DHT can be used for locally published identities
whereas DNS can be more suitable for public advertisement. whereas DNS can be more suitable for public advertisement.
5. New stack architecture 5. New stack architecture
One way to characterize Host Identity is to compare the proposed new One way to characterize Host Identity is to compare the proposed HI-
architecture with the current one. Using the terminology from the based architecture with the current one. Using the terminology from
IRTF Name Space Research Group Report [nsrg-report] and, e.g., the the IRTF Name Space Research Group Report [nsrg-report] and, e.g.,
unpublished Internet-Draft Endpoints and Endpoint Names the unpublished Internet-Draft Endpoints and Endpoint Names
[chiappa-endpoints], the IP addresses currently embody the dual role [chiappa-endpoints], the IP addresses currently embody the dual role
of locators and end-point identifiers. That is, each IP address of locators and end-point identifiers. That is, each IP address
names a topological location in the Internet, thereby acting as a names a topological location in the Internet, thereby acting as a
routing direction vector, or locator. At the same time, the IP routing direction vector, or locator. At the same time, the IP
address names the physical network interface currently located at the address names the physical network interface currently located at the
point-of-attachment, thereby acting as a end-point name. point-of-attachment, thereby acting as a end-point name.
In the HIP architecture, the end-point names and locators are In the HIP architecture, the end-point names and locators are
separated from each other. IP addresses continue to act as locators. separated from each other. IP addresses continue to act as locators.
The Host Identifiers take the role of end-point identifiers. It is The Host Identifiers take the role of end-point identifiers. It is
important to understand that the end-point names based on Host important to understand that the end-point names based on Host
Identities are slightly different from interface names; a Host Identities are slightly different from interface names; a Host
Identity can be simultaneously reachable through several interfaces. Identity can be simultaneously reachable through several interfaces.
The difference between the bindings of the logical entities are The difference between the bindings of the logical entities are
illustrated in Figure 1. Left side illustrates the current TCP/IP illustrated in Figure 1. The left side illustrates the current TCP/
architecture and right side the HIP-based architecture. IP architecture and the right side the HIP-based architecture.
Transport ---- Socket Transport ------ Socket Transport ---- Socket Transport ------ Socket
association | association | association | association |
| | | |
| | | |
| | | |
End-point | End-point --- Host Identity End-point | End-point --- Host Identity
\ | | \ | |
\ | | \ | |
\ | | \ | |
skipping to change at page 14, line 27 skipping to change at page 15, line 13
Figure 1 Figure 1
Architecturally, HIP provides for a different binding of transport- Architecturally, HIP provides for a different binding of transport-
layer protocols. That is, the transport-layer associations, i.e., layer protocols. That is, the transport-layer associations, i.e.,
TCP connections and UDP associations, are no longer bound to IP TCP connections and UDP associations, are no longer bound to IP
addresses but rather to Host Identities. In practice, the Host addresses but rather to Host Identities. In practice, the Host
Identities are exposed as LSIs and HITs for legacy applications and Identities are exposed as LSIs and HITs for legacy applications and
the transport layer to facilitate backward compatibility with the transport layer to facilitate backward compatibility with
existing networking APIs and stacks. existing networking APIs and stacks.
HIP layer is logically located at layer 3.5, between the transport The HIP layer is logically located at layer 3.5, between the
and network layers, in the networking stack. It acts as shim layer transport and network layers, in the networking stack. It acts as
for transport data utilizing LSIs or HITs, but leaves other data shim layer for transport data utilizing LSIs or HITs, but leaves
intact. HIP layer translates between the two forms of HIP other data intact. The HIP layer translates between the two forms of
identifiers originating from the transport layer into routable IPv4/ HIP identifiers originating from the transport layer into routable
IPv6 addresses for the network layer, and vice versa for the reverse IPv4/IPv6 addresses for the network layer, and vice versa for the
direction. reverse direction.
5.1. On the multiplicity of identities 5.1. On the multiplicity of identities
A host may have multiple identities both at the client and server A host may have multiple identities both at the client and server
side. This raises some additional concerns that are addressed in side. This raises some additional concerns that are addressed in
this section. this section.
For security reasons, it may be a bad idea to duplicate the same Host For security reasons, it may be a bad idea to duplicate the same Host
Identity on multiple hosts because the compromise of a single host Identity on multiple hosts because the compromise of a single host
taints the identities of the other hosts. Management of machines taints the identities of the other hosts. Management of machines
skipping to change at page 15, line 15 skipping to change at page 15, line 48
rendezvous server Section 6.3 or HIP relay server Section 6.4. rendezvous server Section 6.3 or HIP relay server Section 6.4.
Instead of duplicating identities, HIP opportunistic mode can be Instead of duplicating identities, HIP opportunistic mode can be
employed, where the initiator leaves out the identifier of the employed, where the initiator leaves out the identifier of the
responder when initiating the key exchange and learns it upon the responder when initiating the key exchange and learns it upon the
completion of the exchange. The tradeoffs are related to lowered completion of the exchange. The tradeoffs are related to lowered
security guarantees, but a benefit of the approach is to avoid security guarantees, but a benefit of the approach is to avoid
publishing of Host Identifiers in any directories [komu-leap]. Since publishing of Host Identifiers in any directories [komu-leap]. Since
many public servers already employ DNS as their directory, many public servers already employ DNS as their directory,
opportunistic mode may be more suitable for, e.g, peer-to-peer opportunistic mode may be more suitable for, e.g, peer-to-peer
connectivity. connectivity. It is also worth noting that opportunistic mode is
also required in practice when anycast IP addresses would be utilized
as locators.
HIP opportunistic mode could be utilized in association with HIP HIP opportunistic mode could be utilized in association with HIP
rendezvous servers or HIP relay servers [komu-diss]. In such a rendezvous servers or HIP relay servers [komu-diss]. In such a
scenario, the Initiator sends an I1 message with a wildcard scenario, the Initiator sends an I1 message with a wildcard
destination HIT to the locator of a HIP rendezvous/relay server. destination HIT to the locator of a HIP rendezvous/relay server.
When the receiving rendezvous/relay server is serving multiple When the receiving rendezvous/relay server is serving multiple
registered Responders, the server can choose the ultimate destination registered Responders, the server can choose the ultimate destination
HIT, thus acting as a HIP based load balancer. However, this HIT, thus acting as a HIP based load balancer. However, this
approach is still experimental and requires further investigation. approach is still experimental and requires further investigation.
skipping to change at page 15, line 50 skipping to change at page 16, line 38
HIP-aware firewalls that are unable see the HTTP traffic inside the HIP-aware firewalls that are unable see the HTTP traffic inside the
encrypted IPsec tunnel. In such a case, each service could be encrypted IPsec tunnel. In such a case, each service could be
configured with a separate identity, thus allowing the firewall to configured with a separate identity, thus allowing the firewall to
segregate the different services of the single web server from each segregate the different services of the single web server from each
other [lindqvist-enterprise]. other [lindqvist-enterprise].
6. Control plane 6. Control plane
HIP decouples control and data plane from each other. Two end-hosts HIP decouples control and data plane from each other. Two end-hosts
initialize the control plane using a key exchange procedure called initialize the control plane using a key exchange procedure called
the base exchange. The procedure can be assisted by new the base exchange. The procedure can be assisted by HIP specific
infrastructural intermediaries called rendezvous or relay servers. infrastructural intermediaries called rendezvous or relay servers.
In the event of IP address changes, the end-hosts sustain control In the event of IP address changes, the end-hosts sustain control
plane connectivity with mobility and multihoming extensions. plane connectivity with mobility and multihoming extensions.
Eventually, the end-hosts terminate the control plane and remove the Eventually, the end-hosts terminate the control plane and remove the
associated state. associated state.
6.1. Base exchange 6.1. Base exchange
The base exchange is a key exchange procedure that authenticates the The base exchange is a key exchange procedure that authenticates the
initiator and responder to each other using their public keys. initiator and responder to each other using their public keys.
Typically, the initiator is the client-side host and the responder is Typically, the initiator is the client-side host and the responder is
skipping to change at page 17, line 9 skipping to change at page 17, line 45
a system is considered mobile if its IP address can change a system is considered mobile if its IP address can change
dynamically for any reason like PPP, DHCP, IPv6 prefix reassignments, dynamically for any reason like PPP, DHCP, IPv6 prefix reassignments,
or a NAT device remapping its translation. Likewise, a system is or a NAT device remapping its translation. Likewise, a system is
considered multi-homed if it has more than one globally routable IP considered multi-homed if it has more than one globally routable IP
address at the same time. HIP links IP addresses together, when address at the same time. HIP links IP addresses together, when
multiple IP addresses correspond to the same Host Identity. If one multiple IP addresses correspond to the same Host Identity. If one
address becomes unusable, or a more preferred address becomes address becomes unusable, or a more preferred address becomes
available, existing transport associations can easily be moved to available, existing transport associations can easily be moved to
another address. another address.
When a node moves while communication is already on-going, address When a mobile node moves while communication is already on-going,
changes are rather straightforward. The peer of the mobile node can address changes are rather straightforward. The mobile node sends a
just accept a HIP or an integrity protected ESP packet from any HIP UPDATE packet to inform the peer of the new address(es), and the
address and ignore the source address. However, as discussed in peer then verifies that the mobile node is reachable through these
Section 12.2 below, a mobile node must send a HIP UPDATE packet to addresses. This way, the peer can avoid flooding attacks as further
inform the peer of the new address(es), and the peer must verify that discussed in Section 11.2.
the mobile node is reachable through these addresses. This is
especially helpful for those situations where the peer node is
sending data periodically to the mobile node (that is, re-starting a
connection after the initial connection).
6.3. Rendezvous mechanism 6.3. Rendezvous mechanism
Establishing a contact to a mobile, moving node is slightly more Establishing a contact to a mobile, moving node is slightly more
involved. In order to start the HIP exchange, the initiator node has involved. In order to start the HIP exchange, the initiator node has
to know how to reach the mobile node. For instance, the mobile node to know how to reach the mobile node. For instance, the mobile node
can employ Dynamic DNS [RFC2136] to update its reachability can employ Dynamic DNS [RFC2136] to update its reachability
information in the DNS. To avoid the dependency to DNS, HIP provides information in the DNS. To avoid the dependency to DNS, HIP provides
its own HIP-specific alternative: the HIP rendezvous mechanism as its own HIP-specific alternative: the HIP rendezvous mechanism as
defined in HIP Rendezvous specifications [RFC8004]. defined in HIP Rendezvous specifications [RFC8004].
skipping to change at page 18, line 7 skipping to change at page 18, line 35
6.4. Relay mechanism 6.4. Relay mechanism
The HIP relay mechanism [I-D.ietf-hip-native-nat-traversal] is an The HIP relay mechanism [I-D.ietf-hip-native-nat-traversal] is an
alternative to the HIP rendezvous mechanism. The HIP relay mechanism alternative to the HIP rendezvous mechanism. The HIP relay mechanism
is more suitable for IPv4 networks with NATs because a HIP relay can is more suitable for IPv4 networks with NATs because a HIP relay can
forward all control and data plane communications in order to forward all control and data plane communications in order to
guarantee successful NAT traversal. guarantee successful NAT traversal.
6.5. Termination of the control plane 6.5. Termination of the control plane
The control plane between two hosts is terminated using a secure two The control plane between two hosts is terminated using a secure two-
message exchange as specified in base exchange specification message exchange as specified in base exchange specification
[RFC7401]. The related state (i.e. host associations) should be [RFC7401]. The related state (i.e. host associations) should be
removed upon successful termination. removed upon successful termination.
7. Data plane 7. Data plane
The encapsulation format for the data plane used for carrying the The encapsulation format for the data plane used for carrying the
application-layer traffic can be dynamically negotiated during the application-layer traffic can be dynamically negotiated during the
key exchange. For instance, HICCUPS extensions [RFC6078] define one key exchange. For instance, HICCUPS extensions [RFC6078] define one
way to transport application-layer datagrams directly over the HIP way to transport application-layer datagrams directly over the HIP
control plane, protected by asymmetric key cryptography. Also, S-RTP control plane, protected by asymmetric key cryptography. Also, SRTP
has been considered as the data encapsulation protocol [hip-srtp]. has been considered as the data encapsulation protocol [hip-srtp].
However, the most widely implemented method is the Encapsulated However, the most widely implemented method is the Encapsulated
Security Payload (ESP) [RFC7402] that is protected by symmetric keys Security Payload (ESP) [RFC7402] that is protected by symmetric keys
derived during the key exchange. ESP Security Associations (SAs) derived during the key exchange. ESP Security Associations (SAs)
offer both confidentiality and integrity protection, of which the offer both confidentiality and integrity protection, of which the
former can be disabled during the key exchange. In the future, other former can be disabled during the key exchange. In the future, other
ways of transporting application-layer data may be defined. ways of transporting application-layer data may be defined.
The ESP SAs are established and terminated between the initiator and The ESP SAs are established and terminated between the initiator and
the responder hosts. Usually, the hosts create at least two SAs, one the responder hosts. Usually, the hosts create at least two SAs, one
skipping to change at page 19, line 35 skipping to change at page 20, line 13
HIP capable hosts traverses through multiple private address realms. HIP capable hosts traverses through multiple private address realms.
NAT traversal extensions for HIP [I-D.ietf-hip-native-nat-traversal] NAT traversal extensions for HIP [I-D.ietf-hip-native-nat-traversal]
can be used to realize the actual end-to-end connectivity through NAT can be used to realize the actual end-to-end connectivity through NAT
devices. To support basic backward compatibility with legacy NATs, devices. To support basic backward compatibility with legacy NATs,
the extensions encapsulate both HIP control and data plane in UDP. the extensions encapsulate both HIP control and data plane in UDP.
The extensions define mechanisms for forwarding the two planes The extensions define mechanisms for forwarding the two planes
through an intermediary host called HIP relay and procedures to through an intermediary host called HIP relay and procedures to
establish direct end-to-end connectivity by penetrating NATs. establish direct end-to-end connectivity by penetrating NATs.
Besides this "native" NAT traversal mode for HIP, other NAT traversal Besides this "native" NAT traversal mode for HIP, other NAT traversal
mechanisms have been successfully utilized, such as Teredo mechanisms have been successfully utilized, such as Teredo [RFC4380]
[varjonen-split]. (as described in further detail in [varjonen-split]).
Besides legacy NATs, a HIP-aware NAT has been designed and Besides legacy NATs, a HIP-aware NAT has been designed and
implemented [ylitalo-spinat]. For a HIP-based flow, a HIP-aware NAT implemented [ylitalo-spinat]. For a HIP-based flow, a HIP-aware NAT
or NAT-PT system tracks the mapping of HITs, and the corresponding or NAT-PT system tracks the mapping of HITs, and the corresponding
ESP SPIs, to an IP address. The NAT system has to learn mappings ESP SPIs, to an IP address. The NAT system has to learn mappings
both from HITs and from SPIs to IP addresses. Many HITs (and SPIs) both from HITs and from SPIs to IP addresses. Many HITs (and SPIs)
can map to a single IP address on a NAT, simplifying connections on can map to a single IP address on a NAT, simplifying connections on
address poor NAT interfaces. The NAT can gain much of its knowledge address-poor NAT interfaces. The NAT can gain much of its knowledge
from the HIP packets themselves; however, some NAT configuration may from the HIP packets themselves; however, some NAT configuration may
be necessary. be necessary.
8.1. HIP and Upper-layer checksums 8.1. HIP and Upper-layer checksums
There is no way for a host to know if any of the IP addresses in an There is no way for a host to know if any of the IP addresses in an
IP header are the addresses used to calculate the TCP checksum. That IP header are the addresses used to calculate the TCP checksum. That
is, it is not feasible to calculate the TCP checksum using the actual is, it is not feasible to calculate the TCP checksum using the actual
IP addresses in the pseudo header; the addresses received in the IP addresses in the pseudo header; the addresses received in the
incoming packet are not necessarily the same as they were on the incoming packet are not necessarily the same as they were on the
skipping to change at page 20, line 29 skipping to change at page 21, line 10
into small data structures, may be a promising way forward into small data structures, may be a promising way forward
[sarela-bloom]. However, the different schemes have not been adopted [sarela-bloom]. However, the different schemes have not been adopted
by the HIP working group (nor the HIP research group in IRTF), so the by the HIP working group (nor the HIP research group in IRTF), so the
details are not further elaborated here. details are not further elaborated here.
10. HIP policies 10. HIP policies
There are a number of variables that influence the HIP exchange that There are a number of variables that influence the HIP exchange that
each host must support. All HIP implementations should support at each host must support. All HIP implementations should support at
least 2 HIs, one to publish in DNS or similar directory service and least 2 HIs, one to publish in DNS or similar directory service and
an unpublished one for anonymous usage. Although unpublished HIs an unpublished one for anonymous usage (that should expect to be
will be rarely used as responder HIs, they are likely to be common rotated frequently in order to disrupt linkability/trackability).
for initiators. Support for multiple HIs is recommended. This Although unpublished HIs will be rarely used as responder HIs, they
provides new challenges for systems or users to decide which type of are likely to be common for initiators. As stated in [RFC7401], "all
HI to expose when they start a new session. HIP implementations MUST support more than one simultaneous HI, at
least one of which SHOULD be reserved for anonymous usage", and
"support for more than two HIs is RECOMMENDED". This provides new
challenges for systems or users to decide which type of HI to expose
when they start a new session.
Opportunistic mode (where the initiator starts a HIP exchange without Opportunistic mode (where the initiator starts a HIP exchange without
prior knowledge of the responder's HI) presents a security tradeoff. prior knowledge of the responder's HI) presents a security tradeoff.
At the expense of being subject to MITM attacks, the opportunistic At the expense of being subject to MITM attacks, the opportunistic
mode allows the initiator to learn the identity of the responder mode allows the initiator to learn the identity of the responder
during communication rather than from an external directory. during communication rather than from an external directory.
Opportunistic mode can be used for registration to HIP-based services Opportunistic mode can be used for registration to HIP-based services
[RFC8003] (i.e. utilized by HIP for its own internal purposes) or by [RFC8003] (i.e. utilized by HIP for its own internal purposes) or by
the application layer [komu-leap]. For security reasons, especially the application layer [komu-leap]. For security reasons, especially
the latter requires some involvement from the user to accept the the latter requires some involvement from the user to accept the
identity of the responder similar to how SSH prompts the user when identity of the responder similar to how SSH prompts the user when
connecting to a server for the first time [pham-leap]. In practice, connecting to a server for the first time [pham-leap]. In practice,
this can be realized in end-host based firewalls in the case of this can be realized in end-host based firewalls in the case of
legacy applications [karvonen-usable] or with native APIs for HIP legacy applications [karvonen-usable] or with native APIs for HIP
APIs [RFC6317] in the case of HIP-aware applications. APIs [RFC6317] in the case of HIP-aware applications.
Many initiators would want to use a different HI for different As stated in [RFC7401], "Initiators MAY use a different HI for
responders. The implementations should provide for a policy mapping different Responders to provide basic privacy. Whether such private
of initiator HITs to responder HITs. This policy should also include HIs are used repeatedly with the same Responder, and how long these
preferred transforms and local lifetimes. HIs are used, are decided by local policy and depend on the privacy
requirements of the Initiator".
Responders would need a similar policy, describing the hosts allowed
to participate in HIP exchanges, and the preferred transforms and
local lifetimes.
11. Design considerations
11.1. Benefits of HIP
In the beginning, the network layer protocol (i.e., IP) had the
following four "classic" invariants:
1. Non-mutable: The address sent is the address received.
2. Non-mobile: The address doesn't change during the course of an
"association".
3. Reversible: A return header can always be formed by reversing the
source and destination addresses.
4. Omniscient: Each host knows what address a partner host can use
to send packets to it.
Actually, the fourth can be inferred from 1 and 3, but it is worth
mentioning explicitly for reasons that will be obvious soon if not
already.
In the current "post-classic" world, we are intentionally trying to
get rid of the second invariant (both for mobility and for multi-
homing), and we have been forced to give up the first and the fourth.
Realm Specific IP [RFC3102] is an attempt to reinstate the fourth
invariant without the first invariant. IPv6 is an attempt to
reinstate the first invariant.
Few client-side systems on the Internet have DNS names that are
meaningful. That is, if they have a Fully Qualified Domain Name
(FQDN), that name typically belongs to a NAT device or a dial-up
server, and does not really identify the system itself but its
current connectivity. FQDNs (and their extensions as email names)
are application-layer names; more frequently naming services than
particular systems. This is why many systems on the Internet are not
registered in the DNS; they do not have services of interest to other
Internet hosts.
DNS names are references to IP addresses. This only demonstrates the
interrelationship of the networking and application layers. DNS, as
the Internet's only deployed and distributed database, is also the
repository of other namespaces, due in part to DNSSEC and application
specific key records. Although each namespace can be stretched (IP
with v6, DNS with KEY records), neither can adequately provide for
host authentication or act as a separation between internetworking
and transport layers.
The Host Identity (HI) namespace fills an important gap between the
IP and DNS namespaces. An interesting thing about the HI is that it
actually allows a host to give up all but the 3rd network-layer
invariant. That is to say, as long as the source and destination
addresses in the network-layer protocol are reversible, HIP takes
care of host identification, and reversibility allows a local host to
receive a packet back from a remote host. The address changes
occurring during NAT transit (non-mutable) or host movement (non-
omniscient or non-mobile) can be managed by the HIP layer.
With the exception of High-Performance Computing applications, the
Sockets API is the most common way to develop network applications.
Applications use the Sockets API either directly or indirectly
through some libraries or frameworks. However, the Sockets API is
based on the assumption of static IP addresses, and DNS with its
lifetime values was invented at later stages during the evolution of
the Internet. Hence, the Sockets API does not deal with the lifetime
of addresses [RFC6250]. As the majority of the end-user equipment is
mobile today, their addresses are effectively ephemeral, but the
Sockets API still gives a fallacious illusion of persistent IP
addresses to the unwary developer. HIP can be used to solidify this
illusion because HIP provides persistent surrogate addresses to the
application layer in the form of LSIs and HITs.
The persistent identifiers as provided by HIP are useful in multiple
scenarios (see, e.g., [ylitalo-diss] or [komu-diss], for a more
elaborate discussion):
o When a mobile host moves physically between two different WLAN
networks and obtains a new address, an application using the
identifiers remains isolated regardless of the topology changes
while the underlying HIP layer re-establishes connectivity (i.e. a
horizontal handoff).
o Similarly, the application utilizing the identifiers remains again
unaware of the topological changes when the underlying host
equipped with WLAN and cellular network interfaces switches
between the two different access technologies (i.e. a vertical
handoff).
o Even when hosts are located in private address realms,
applications can uniquely distinguish different hosts from each
other based on their identifiers. In other words, it can be
stated that HIP improves Internet transparency for the application
layer [komu-diss].
o Site renumbering events for services can occur due to corporate
mergers or acquisitions, or by changes in Internet Service
Provider. They can involve changing the entire network prefix of
an organization, which is problematic due to hard-coded addresses
in service configuration files or cached IP addresses at the
client side [RFC5887]. Considering such human errors, a site
employing location-independent identifiers as promoted by HIP may
experience less problems while renumbering their network.
o More agile IPv6 interoperability can be achieved, as discussed in
Section 4.4. IPv6-based applications can communicate using HITs
with IPv4-based applications that are using LSIs. Additionally,
the underlying network type (IPv4 or IPv6) becomes independent of
the addressing family of the application.
o HITs (or LSIs) can be used in IP-based access control lists as a
more secure replacement for IPv6 addresses. Besides security, HIT
based access control has two other benefits. First, the use of
HITs can potentially halve the size of access control lists
because separate rules for IPv4 are not needed [komu-diss].
Second, HIT-based configuration rules in HIP-aware middleboxes
remain static and independent of topology changes, thus
simplifying administrative efforts particularly for mobile
environments. For instance, the benefits of HIT based access
control have been harnessed in the case of HIP-aware firewalls,
but can be utilized directly at the end-hosts as well [RFC6538].
While some of these benefits could be and have been redundantly
implemented by individual applications, providing such generic
functionality at the lower layers is useful because it reduces
software development effort and networking software bugs (as the
layer is tested with multiple applications). It also allows the
developer to focus on building the application itself rather than
delving into the intricacies of mobile networking, thus facilitating
separation of concerns.
HIP could also be realized by combining a number of different
protocols, but the complexity of the resulting software may become
substantially larger, and the interaction between multiple possibly
layered protocols may have adverse effects on latency and throughput.
It is also worth noting that virtually nothing prevents realizing the
HIP architecture, for instance, as an application-layer library,
which has been actually implemented in the past [xin-hip-lib].
However, the tradeoff in moving the HIP layer to the application
layer is that legacy applications may not be supported.
11.2. Drawbacks of HIP
In computer science, many problems can be solved with an extra layer
of indirection. However, the indirection always involves some costs
as there is no such a thing as "free lunch". In the case of HIP, the
main costs could be stated as follows:
o In general, a new layer and a new namespace always involve some
initial effort in terms of implementation, deployment and
maintenance. Some education of developers and administrators may
also be needed. However, the HIP community at the IETF has spent
years in experimenting, exploring, testing, documenting and
implementing HIP to ease the adoption costs.
o HIP decouples identifier and locator roles of IP addresses.
Consequently, a mapping mechanism is needed to associate them
together. A failure to map a HIT to its corresponding locator may
result in failed connectivity because a HIT is "flat" by its
nature and cannot be looked up from the hierarchically organized
DNS. HITs are flat by design due to a security tradeoff. The
more bits are allocated for the hash in the HIT, the less likely
there will be (malicious) collisions.
o From performance viewpoint, HIP control and data plane processing
introduces some overhead in terms of throughput and latency as
elaborated below.
The key exchange introduces some extra latency (two round trips) in
the initial transport layer connection establishment between two
hosts. With TCP, additional delay occurs if the underlying network
stack implementation drops the triggering SYN packet during the key
exchange. The same cost may also occur during HIP handoff
procedures. However, subsequent TCP sessions using the same HIP
association will not bear this cost (within the key lifetime). Both
the key exchange and handoff penalties can be minimized by caching
TCP packets. The latter case can further be optimized with TCP user
timeout extensions [RFC5482] as described in further detail by
Schuetz et al [schuetz-intermittent].
The most CPU-intensive operations involve the use of the asymmetric
keys and Diffie-Hellman key derivation at the control plane, but this
occurs only during the key exchange, its maintenance (handoffs,
refreshing of key material) and tear down procedures of HIP
associations. The data plane is typically implemented with ESP
because it has a smaller overhead due to symmetric key encryption.
Naturally, even ESP involves some overhead in terms of latency
(processing costs) and throughput (tunneling) (see e.g.
[ylitalo-diss] for a performance evaluation).
11.3. Deployment and adoption considerations
This section describes some deployment and adoption considerations
related to HIP from a technical perspective.
11.3.1. Deployment analysis
HIP has commercially been utilized at Boeing airplane factory for
their internal purposes [paine-hip]. It has been included in a
security product called Tofino to support layer-two Virtual Private
Networks [henderson-vpls] to facilitate, e.g, supervisory control and
data acquisition (SCADA) security. However, HIP has not been a "wild
success" [RFC5218] in the Internet as argued by Levae et al
[leva-barriers]. Here, we briefly highlight some of their findings
based on interviews with 19 experts from the industry and academia.
From a marketing perspective, the demand for HIP has been low and
substitute technologies have been favored. Another identified reason
has been that some technical misconceptions related to the early
stages of HIP specifications still persist. Two identified
misconceptions are that HIP does not support NAT traversal, and that
HIP must be implemented in the OS kernel. Both of these claims are
untrue; HIP does have NAT traversal extensions
[I-D.ietf-hip-native-nat-traversal], and kernel modifications can be
avoided with modern operating systems by diverting packets for
userspace processing.
The analysis by Levae et al clarifies infrastructural requirements
for HIP. In a minimal set up, a client and server machine have to
run HIP software. However, to avoid manual configurations, usually
DNS records for HIP are set up. For instance, the popular DNS server
software Bind9 does not require any changes to accommodate DNS
records for HIP because they can be supported in binary format in its
configuration files [RFC6538]. HIP rendezvous servers and firewalls
are optional. No changes are required to network address points,
NATs, edge routers or core networks. HIP may require holes in legacy
firewalls.
The analysis also clarifies the requirements for the host components
that consist of three parts. First, a HIP control plane component is
required, typically implemented as a userspace daemon. Second, a
data plane component is needed. Most HIP implementations utilize the
so called BEET mode of ESP that has been available since Linux kernel
2.6.27, but is included also as a userspace component in a few of the
implementations. Third, HIP systems usually provide a DNS proxy for
the local host that translates HIP DNS records to LSIs and HITs, and
communicates the corresponding locators to HIP userspace daemon.
While the third component is not mandatory, it is very useful for
avoiding manual configurations. The three components are further
described in the HIP experiment report [RFC6538].
Based on the interviews, Levae et al suggest further directions to
facilitate HIP deployment. Transitioning the HIP specifications to
the standards track may help, but other measures could be taken. As
a more radical measure, the authors suggest to implement HIP as a
purely application-layer library [xin-hip-lib] or other kind of
middleware. On the other hand, more conservative measures include
focusing on private deployments controlled by a single stakeholder.
As a more concrete example of such a scenario, HIP could be used by a
single service provider to facilitate secure connectivity between its
servers [komu-cloud].
11.3.2. HIP in 802.15.4 networks
The IEEE 802 standards have been defining MAC layered security. Many
of these standards use EAP [RFC3748] as a Key Management System (KMS)
transport, but some like IEEE 802.15.4 [IEEE.802-15-4.2011] leave the
KMS and its transport as "Out of Scope".
HIP is well suited as a KMS in these environments:
o HIP is independent of IP addressing and can be directly
transported over any network protocol.
o Master Keys in 802 protocols are commonly pair-based with group
keys transported from the group controller using pair-wise keys.
o AdHoc 802 networks can be better served by a peer-to-peer KMS than
the EAP client/server model.
o Some devices are very memory constrained and a common KMS for both
MAC and IP security represents a considerable code savings.
11.3.3. HIP and Internet of Things
HIP requires certain amount computational resources from a device due
to cryptographic processing. HIP scales down to phones and small
system-on-chip devices (such as Raspberry Pis, Intel Edison), but
small sensors operating with small batteries have remained
problematic. Different extensions to the HIP have been developed to
scale HIP down to smaller devices, typically with different security
tradeoffs. For example, the non-cryptographic identifiers have been
proposed in RFID scenarios. The slimfit approach [hummen] proposes a
compression layer for HIP to make it more suitable for constrained
networks. The approach is applied to a light-weight version of HIP
(i.e. "Diet HIP") in order to scale down to small sensors.
The HIP Diet Exchange [I-D.ietf-hip-dex] design aims at reducing the
overhead of the employed cryptographic primitives by omitting public-
key signatures and hash functions. In doing so, the main goal is to
still deliver similar security properties to the Base Exchange (BEX).
DEX is primarily designed for computation or memory- constrained
sensor/actuator devices. Like BEX, it is expected to be used
together with a suitable security protocol such as the Encapsulated
Security Payload (ESP) for the protection of upper layer protocol
data. In addition, DEX can also be used as a keying mechanism for
security primitives at the MAC layer, e.g., for IEEE 802.15.9
networks ([IEEE.802-15-9].
The main differences between HIP BEX and DEX are:
1. Minimum collection of cryptographic primitives to reduce the
protocol overhead.
* Static Elliptic Curve Diffie-Hellman key pairs for peer
authentication and encryption of the session key.
* AES-CTR for symmetric encryption and AES-CMAC for MACing
function.
* A simple fold function for HIT generation.
2. Forfeit of Perfect Forward Secrecy with the dropping of an
ephemeral Diffie-Hellman key agreement.
3. Forfeit of digital signatures with the removal of a hash
function. Reliance on ECDH derived key used in HIP_MAC to prove
ownership of the private key.
4. Diffie-Hellman derived key ONLY used to protect the HIP packets.
A separate secret exchange within the HIP packets creates the
session key(s).
5. Optional retransmission strategy tailored to handle the
potentially extensive processing time of the employed
cryptographic operations on computationally constrained devices.
11.4. Answers to NSRG questions
The IRTF Name Space Research Group has posed a number of evaluating
questions in their report [nsrg-report]. In this section, we provide
answers to these questions.
1. How would a stack name improve the overall functionality of the
Internet?
HIP decouples the internetworking layer from the transport
layer, allowing each to evolve separately. The decoupling
makes end-host mobility and multi-homing easier, also across
IPv4 and IPv6 networks. HIs make network renumbering easier,
and they also make process migration and clustered servers
easier to implement. Furthermore, being cryptographic in
nature, they provide the basis for solving the security
problems related to end-host mobility and multi-homing.
2. What does a stack name look like?
A HI is a cryptographic public key. However, instead of using
the keys directly, most protocols use a fixed size hash of the
public key.
3. What is its lifetime?
HIP provides both stable and temporary Host Identifiers.
Stable HIs are typically long lived, with a lifetime of years
or more. The lifetime of temporary HIs depends on how long
the upper-layer connections and applications need them, and
can range from a few seconds to years.
4. Where does it live in the stack?
The HIs live between the transport and internetworking layers.
5. How is it used on the end points?
The Host Identifiers may be used directly or indirectly (in
the form of HITs or LSIs) by applications when they access
network services. Additionally, the Host Identifiers, as
public keys, are used in the built in key agreement protocol,
called the HIP base exchange, to authenticate the hosts to
each other.
6. What administrative infrastructure is needed to support it?
In some environments, it is possible to use HIP
opportunistically, without any infrastructure. However, to
gain full benefit from HIP, the HIs must be stored in the DNS
or a PKI, and a new rendezvous mechanism is needed [RFC8005].
7. If we add an additional layer would it make the address list in
SCTP unnecessary?
Yes
8. What additional security benefits would a new naming scheme
offer?
HIP reduces dependency on IP addresses, making the so called
address ownership [Nik2001] problems easier to solve. In
practice, HIP provides security for end-host mobility and
multi-homing. Furthermore, since HIP Host Identifiers are
public keys, standard public key certificate infrastructures
can be applied on the top of HIP.
9. What would the resolution mechanisms be, or what characteristics
of a resolution mechanisms would be required?
For most purposes, an approach where DNS names are resolved According to [RFC7401], "Responders that only respond to selected
simultaneously to HIs and IP addresses is sufficient. Initiators require an Access Control List (ACL), representing for
However, if it becomes necessary to resolve HIs into IP which hosts they accept HIP base exchanges, and the preferred
addresses or back to DNS names, a flat resolution transport format and local lifetimes. Wildcarding SHOULD be
infrastructure is needed. Such an infrastructure could be supported for such ACLs, and also for Responders that offer public or
based on the ideas of Distributed Hash Tables, but would anonymous services".
require significant new development and deployment.
12. Security considerations 11. Security considerations
This section includes discussion on some issues and solutions related This section includes discussion on some issues and solutions related
to security in the HIP architecture. to security in the HIP architecture.
12.1. MiTM Attacks 11.1. MiTM Attacks
HIP takes advantage of the new Host Identity paradigm to provide HIP takes advantage of the Host Identity paradigm to provide secure
secure authentication of hosts and to provide a fast key exchange for authentication of hosts and to provide a fast key exchange for ESP.
ESP. HIP also attempts to limit the exposure of the host to various HIP also attempts to limit the exposure of the host to various
denial-of-service (DoS) and man-in-the-middle (MitM) attacks. In so denial-of-service (DoS) and man-in-the-middle (MitM) attacks. In so
doing, HIP itself is subject to its own DoS and MitM attacks that doing, HIP itself is subject to its own DoS and MitM attacks that
potentially could be more damaging to a host's ability to conduct potentially could be more damaging to a host's ability to conduct
business as usual. business as usual.
Resource exhausting denial-of-service attacks take advantage of the Resource exhausting denial-of-service attacks take advantage of the
cost of setting up a state for a protocol on the responder compared cost of setting up a state for a protocol on the responder compared
to the 'cheapness' on the initiator. HIP allows a responder to to the 'cheapness' on the initiator. HIP allows a responder to
increase the cost of the start of state on the initiator and makes an increase the cost of the start of state on the initiator and makes an
effort to reduce the cost to the responder. This is done by having effort to reduce the cost to the responder. This is done by having
skipping to change at page 30, line 29 skipping to change at page 22, line 42
responder's HI is retrieved from a signed DNS zone or securely responder's HI is retrieved from a signed DNS zone or securely
obtained by some other means, the initiator can use this to obtained by some other means, the initiator can use this to
authenticate the signed HIP packets. Likewise, if the initiator's HI authenticate the signed HIP packets. Likewise, if the initiator's HI
is in a secure DNS zone, the responder can retrieve it and validate is in a secure DNS zone, the responder can retrieve it and validate
the signed HIP packets. However, since an initiator may choose to the signed HIP packets. However, since an initiator may choose to
use an unpublished HI, it knowingly risks a MitM attack. The use an unpublished HI, it knowingly risks a MitM attack. The
responder may choose not to accept a HIP exchange with an initiator responder may choose not to accept a HIP exchange with an initiator
using an unknown HI. using an unknown HI.
Other types of MitM attacks against HIP can be mounted using ICMP Other types of MitM attacks against HIP can be mounted using ICMP
messages that can be used to signal about problems. As a overall messages that can be used to signal about problems. As an overall
guideline, the ICMP messages should be considered as unreliable guideline, the ICMP messages should be considered as unreliable
"hints" and should be acted upon only after timeouts. The exact "hints" and should be acted upon only after timeouts. The exact
attack scenarios and countermeasures are described in full detail the attack scenarios and countermeasures are described in full detail the
base exchange specification [RFC7401]. base exchange specification [RFC7401].
The need to support multiple hashes for generating the HIT from the A MitM attacker could try to replay older I1 or R1 messages using
HI affords the MitM to mount a potentially powerful downgrade attack weaker cryptographic algorithms as described in section 4.1.4 in
due to the a-priori need of the HIT in the HIP base exchange. The [RFC7401]. The base exchange has been augmented to deal with such an
base exchange has been augmented to deal with such an attack by attack by restarting on detecting the attack. At worst this would
restarting on detecting the attack. At worst this would only lead to only lead to a situation in which the base exchange would never
a situation in which the base exchange would never finish (or would finish (or would be aborted after some retries). As a drawback, this
be aborted after some retries). As a drawback, this leads to an leads to a 6-way base exchange which may seem bad at first. However,
6-way base exchange which may seem bad at first. However, since this since this only occurs in an attack scenario and since the attack can
only occurs in an attack scenario and since the attack can be handled be handled (so it is not interesting to mount anymore), we assume the
(so it is not interesting to mount anymore), we assume the subsequent subsequent messages do not represent a security threat. Since the
messages do not represent a security threat. Since the MitM cannot MitM cannot be successful with a downgrade attack, these sorts of
be successful with a downgrade attack, these sorts of attacks will attacks will only occur as 'nuisance' attacks. So, the base exchange
only occur as 'nuisance' attacks. So, the base exchange would still would still be usually just four packets even though implementations
be usually just four packets even though implementations must be must be prepared to protect themselves against the downgrade attack.
prepared to protect themselves against the downgrade attack.
In HIP, the Security Association for ESP is indexed by the SPI; the In HIP, the Security Association for ESP is indexed by the SPI; the
source address is always ignored, and the destination address may be source address is always ignored, and the destination address may be
ignored as well. Therefore, HIP-enabled Encapsulated Security ignored as well. Therefore, HIP-enabled Encapsulated Security
Payload (ESP) is IP address independent. This might seem to make Payload (ESP) is IP address independent. This might seem to make
attacking easier, but ESP with replay protection is already as well attacking easier, but ESP with replay protection is already as well
protected as possible, and the removal of the IP address as a check protected as possible, and the removal of the IP address as a check
should not increase the exposure of ESP to DoS attacks. should not increase the exposure of ESP to DoS attacks.
12.2. Protection against flooding attacks 11.2. Protection against flooding attacks
Although the idea of informing about address changes by simply Although the idea of informing about address changes by simply
sending packets with a new source address appears appealing, it is sending packets with a new source address appears appealing, it is
not secure enough. That is, even if HIP does not rely on the source not secure enough. That is, even if HIP does not rely on the source
address for anything (once the base exchange has been completed), it address for anything (once the base exchange has been completed), it
appears to be necessary to check a mobile node's reachability at the appears to be necessary to check a mobile node's reachability at the
new address before actually sending any larger amounts of traffic to new address before actually sending any larger amounts of traffic to
the new address. the new address.
Blindly accepting new addresses would potentially lead to flooding Blindly accepting new addresses would potentially lead to flooding
skipping to change at page 31, line 44 skipping to change at page 24, line 5
A credit-based authorization approach for host mobility with the Host A credit-based authorization approach for host mobility with the Host
Identity Protocol [RFC8046] can be used between hosts for sending Identity Protocol [RFC8046] can be used between hosts for sending
data prior to completing the address tests. Otherwise, if HIP is data prior to completing the address tests. Otherwise, if HIP is
used between two hosts that fully trust each other, the hosts may used between two hosts that fully trust each other, the hosts may
optionally decide to skip the address tests. However, such optionally decide to skip the address tests. However, such
performance optimization must be restricted to peers that are known performance optimization must be restricted to peers that are known
to be trustworthy and capable of protecting themselves from malicious to be trustworthy and capable of protecting themselves from malicious
software. software.
12.3. HITs used in ACLs 11.3. HITs used in ACLs
At end-hosts, HITs can be used in IP-based access control lists at At end-hosts, HITs can be used in IP-based access control lists at
the application and network layers. At middleboxes, HIP-aware the application and network layers. At middleboxes, HIP-aware
firewalls [lindqvist-enterprise] can use HITs or public keys to firewalls [lindqvist-enterprise] can use HITs or public keys to
control both ingress and egress access to networks or individual control both ingress and egress access to networks or individual
hosts, even in the presence of mobile devices because the HITs and hosts, even in the presence of mobile devices because the HITs and
public keys are topologically independent. As discussed earlier in public keys are topology independent. As discussed earlier in
Section 7, once a HIP session has been established, the SPI value in Section 7, once a HIP session has been established, the SPI value in
an ESP packet may be used as an index, indicating the HITs. In an ESP packet may be used as an index, indicating the HITs. In
practice, firewalls can inspect HIP packets to learn of the bindings practice, firewalls can inspect HIP packets to learn of the bindings
between HITs, SPI values, and IP addresses. They can even explicitly between HITs, SPI values, and IP addresses. They can even explicitly
control ESP usage, dynamically opening ESP only for specific SPI control ESP usage, dynamically opening ESP only for specific SPI
values and IP addresses. The signatures in HIP packets allow a values and IP addresses. The signatures in HIP packets allow a
capable firewall to ensure that the HIP exchange is indeed occurring capable firewall to ensure that the HIP exchange is indeed occurring
between two known hosts. This may increase firewall security. between two known hosts. This may increase firewall security.
A potential drawback of HITs in ACLs is their 'flatness' means they A potential drawback of HITs in ACLs is their 'flatness' means they
skipping to change at page 33, line 16 skipping to change at page 25, line 25
between two HIP hosts and later replays it. This way, the attacker between two HIP hosts and later replays it. This way, the attacker
manages to penetrate the firewall and can use a fake ESP tunnel to manages to penetrate the firewall and can use a fake ESP tunnel to
transport its own data. This is possible because the firewall cannot transport its own data. This is possible because the firewall cannot
distinguish when the ESP tunnel is valid. As a solution, HIP-aware distinguish when the ESP tunnel is valid. As a solution, HIP-aware
middleboxes may participate to the control plane interaction by middleboxes may participate to the control plane interaction by
adding random nonce parameters to the control traffic, which the end- adding random nonce parameters to the control traffic, which the end-
hosts have to sign to guarantee the freshness of the control traffic hosts have to sign to guarantee the freshness of the control traffic
[heer-midauth]. As an alternative, extensions for transporting data [heer-midauth]. As an alternative, extensions for transporting data
plane directly over the control plane can be used [RFC6078]. plane directly over the control plane can be used [RFC6078].
12.4. Alternative HI considerations 11.4. Alternative HI considerations
The definition of the Host Identifier states that the HI need not be The definition of the Host Identifier states that the HI need not be
a public key. It implies that the HI could be any value; for example a public key. It implies that the HI could be any value; for example
a FQDN. This document does not describe how to support such a non- a FQDN. This document does not describe how to support such a non-
cryptographic HI, but examples of such protocol variants do exist cryptographic HI, but examples of such protocol variants do exist
([urien-rfid], [urien-rfid-draft]). A non-cryptographic HI would ([urien-rfid], [urien-rfid-draft]). A non-cryptographic HI would
still offer the services of the HIT or LSI for NAT traversal. It still offer the services of the HIT or LSI for NAT traversal. It
would be possible to carry HITs in HIP packets that had neither would be possible to carry HITs in HIP packets that had neither
privacy nor authentication. Such schemes may be employed for privacy nor authentication. Such schemes may be employed for
resource constrained devices, such as small sensors operating on resource constrained devices, such as small sensors operating on
battery power, but are not further analyzed here. battery power, but are not further analyzed here.
If it is desirable to use HIP in a low security situation where If it is desirable to use HIP in a low security situation where
public key computations are considered expensive, HIP can be used public key computations are considered expensive, HIP can be used
with very short Diffie-Hellman and Host Identity keys. Such use with very short Diffie-Hellman and Host Identity keys. Such use
makes the participating hosts vulnerable to MitM and connection makes the participating hosts vulnerable to MitM and connection
hijacking attacks. However, it does not cause flooding dangers, hijacking attacks. However, it does not cause flooding dangers,
since the address check mechanism relies on the routing system and since the address check mechanism relies on the routing system and
not on cryptographic strength. not on cryptographic strength.
13. IANA considerations 11.5. Trust On First Use
[RFC7435] highlights four design principles for Leap of Faith, or
Trust On First Use (TOFU), protocols that apply also to opportunistic
HIP:
1. Coexist with explicit policy
2. Prioritize communication
3. Maximize security peer by peer
4. No misrepresentation of security
According to the first TOFU design principle, "opportunistic security
never displaces or preempts explicit policy". Some application data
may be too sensitive, so the related policy could require
authentication (i.e, the public key or certificate) in such a case
instead of the unauthenticated opportunistic mode. In practice, this
has been realized in HIP implementations as follows [RFC6538].
The OpenHIP implementation allowed an Initiator to use opportunistic
mode only with an explicitly configured Responder IP address, when
the Responder's HIT is unknown. At the Responder, OpenHIP had an
option to allow opportunistic mode with any Initiator -- trust any
Initiator.
HIP for Linux (HIPL) developers experimented with more fine-grained
policies operating at the application level. HIPL implementation
utilized so called "LD_PRELOAD" hooking at the application layer that
allowed a dynamically linked library to intercept socket-related
calls without rebuilding the related application binaries. The
library acted as a shim layer between the application and transport
layers. The shim layer translated the non-HIP based socket calls
from the application into HIP-based socket calls. While the shim
library involved some level of complexity as described in more detail
in [komu-leap], it achieved the goal of applying opportunistic mode
at the granularity of individual applications.
The second TOFU principle essentially states that communication
should be first class citizen instead of security. So opportunistic
mode should be, in general, allowed even if no authentication is
present, and even possibly a fallback to non-encrypted communications
could be allowed (if policy permits) instead of blocking
communications. In practice, this can be realized in three steps.
In the first step, a HIP Initiator can look up the HI of a Responder
from a directory such as DNS. When the Initiator discovers a HI, it
can use the HI for authentication and skip the rest of the following
steps. In the second step, the Initiator can, upon failing to find a
HI, try opportunistic mode with the Responder. In the third step,
the Initiator can fall back to non-HIP based communications upon
failing with opportunistic mode if the policy allows it. This three
step model has been implemented successfully and described in more
detail in [komu-leap].
The third TOFU principle suggests that security should be maximized,
so that at least opportunistic security would be employed. The three
step model described earlier prefers authentication when it is
available, e.g., via DNS records (and possibly even via DNSSEC when
available) and falls back to opportunistic mode when no out-of-band
credentials are available. As the last resort, fallback to non-HIP
based communications can be used if the policy allows it. Also,
since perfect forward security (PFS) is explicitly mentioned in the
third design principle, it is worth mentioning that HIP supports it.
The fourth TOFU principle states that users and non-interactive
applications should be properly informed about the level of security
being applied. In practice, non-HIP aware applications would assume
no extra security being applied, so misleading at least a non-
interactive application should not be possible. In the case of
interactive desktop applications, system-level prompts have been
utilized in earlier HIP experiments [karvonen-usable], [RFC6538] to
guide the user about the underlying HIP-based security. In general,
users in those experiments perceived when HIP-based security was
being used versus not used. However, the users failed to notice the
difference between opportunistic and non-opportunistic HIP. The
reason for this was that the opportunistic HIP (i.e. lowered level of
security) was not clearly indicated in the prompt. This provided a
valuable lesson to further improve the user interface.
In the case of HIP-aware applications, native sockets APIs for HIP as
specified in [RFC6317] can be used to develop application-specific
logic instead of using generic system-level prompting. In such case,
the application itself can directly prompt the user or otherwise
manage the situation in other ways. In this case, also non-
interactive applications can properly log the level of security being
employed because the developer can now explicitly program the use of
authenticated HIP, opportunistic HIP and plain-text communication.
It is worth mentioning a few additional items discussed in [RFC7435].
Related to active attacks, HIP has built-in protection against
cipher-suite down-grade attacks as described in detail in [RFC7401].
In addition, pre-deployed certificates could be used to mitigate
against active attacks in the case of opportunistic mode as mentioned
in [RFC6538].
Detection of peer capabilities is also mentioned in the TOFU context.
As discussed in this section, the three-step model can be used to
detect peer capabilities. A host can achieve the first step of
authentication, i.e., discovery of a public key, via DNS, for
instance. If the host found no keys, the host can then try
opportunistic mode as the second step. Upon a timeout, the host can
then proceed to the third step by falling back to non-HIP based
communications if the policy permits. This last step is based on an
implicit timeout rather an explicit (negative) acknowledgment like in
the case of DNS, so the user may conclude prematurely that the
connectivity has failed. To speed up the detection phase by
explicitly detecting if the peer supports opportunistic HIP,
researchers have proposed TCP specific extensions [RFC6538],
[komu-leap]. In a nutshell, an Initiator sends simultaneously both
an opportunistic I1 packet and the related TCP SYN datagram equipped
with a special TCP option to a peer. If the peer supports HIP, it
drops the SYN packet and responds with an R1. If the peer is HIP
incapable, it drops the HIP packet (and the unknown TCP option) and
responds with a TCP SYN-ACK. The benefit of the proposed scheme is
faster, one round-trip fallback to non-HIP based communications. The
drawback is that the approach is tied to TCP (IP-options were also
considered, but do not work well with firewalls and NATs).
Naturally, the approach does not work against active attacker, but
opportunistic mode is not anyway supposed to protect against such an
adversary.
It is worth noting that while the use of opportunistic mode has some
benefits related to incremental deployment, it does not achieve all
the benefits of authenticated HIP [komu-diss]. Namely, authenticated
HIP supports persistent identifiers in the sense that hosts are
identified with the same HI independently of their movement.
Opportunistic HIP meets this goal only partially: after the first
contact between two hosts, HIP can successfully sustain connectivity
with its mobility management extensions, but problems emerge when the
hosts close the HIP association and try to re-establish connectivity.
As hosts can change their location, it is no longer guaranteed that
the same IP address belongs to the same host. The same address can
be temporally assigned to different hosts, e.g., due to the reuse of
IP addresses (e.g., by a DHCP service), overlapping private address
realms (see also the discussion on Internet transparency in
Appendix A.1) or due to an attempted attack.
12. IANA considerations
This document has no actions for IANA. This document has no actions for IANA.
14. Acknowledgments 13. Acknowledgments
For the people historically involved in the early stages of HIP, see For the people historically involved in the early stages of HIP, see
the Acknowledgments section in the Host Identity Protocol the Acknowledgments section in the Host Identity Protocol
specification. specification.
During the later stages of this document, when the editing baton was During the later stages of this document, when the editing baton was
transferred to Pekka Nikander, the comments from the early transferred to Pekka Nikander, the comments from the early
implementers and others, including Jari Arkko, Tom Henderson, Petri implementers and others, including Jari Arkko, Jeff AhrenHolz, Tom
Jokela, Miika Komu, Mika Kousa, Andrew McGregor, Jan Melen, Tim Henderson, Petri Jokela, Miika Komu, Mika Kousa, Andrew McGregor, Jan
Shepard, Jukka Ylitalo, Sasu Tarkoma, and Jorma Wall, were Melen, Tim Shepard, Jukka Ylitalo, Sasu Tarkoma, and Jorma Wall, were
invaluable. Also, the comments from Lars Eggert, Spencer Dawkins and invaluable. Also, the comments from Lars Eggert, Spencer Dawkins,
Dave Crocker were also useful. Dave Crocker and Erik Giesa were also useful.
The authors want to express their special thanks to Tom Henderson, The authors want to express their special thanks to Tom Henderson,
who took the burden of editing the document in response to IESG who took the burden of editing the document in response to IESG
comments at the time when both of the authors were busy doing other comments at the time when both of the authors were busy doing other
things. Without his perseverance original document might have never things. Without his perseverance original document might have never
made it as RFC4423. made it as RFC4423.
This main effort to update and move HIP forward within the IETF This main effort to update and move HIP forward within the IETF
process owes its impetuous to a number of HIP development teams. The process owes its impetuous to a number of HIP development teams. The
authors are grateful for Boeing, Helsinki Institute for Information authors are grateful for Boeing, Helsinki Institute for Information
Technology (HIIT), NomadicLab of Ericsson, and the three Technology (HIIT), NomadicLab of Ericsson, and the three
universities: RWTH Aachen, Aalto and University of Helsinki, for universities: RWTH Aachen, Aalto and University of Helsinki, for
their efforts. Without their collective efforts HIP would have their efforts. Without their collective efforts HIP would have
withered as on the IETF vine as a nice concept. withered as on the IETF vine as a nice concept.
Thanks also for Suvi Koskinen for her help with proofreading and with Thanks also for Suvi Koskinen for her help with proofreading and with
the reference jungle. the reference jungle.
15. Changes from RFC 4423 14. Changes from RFC 4423
In a nutshell, the changes from RFC 4423 [RFC4423] are mostly In a nutshell, the changes from RFC 4423 [RFC4423] are mostly
editorial, including clarifications on topics described in a editorial, including clarifications on topics described in a
difficult way and omitting some of the non-architectural difficult way and omitting some of the non-architectural
(implementation) details that are already described in other (implementation) details that are already described in other
documents. A number of missing references to the literature were documents. A number of missing references to the literature were
also added. New topics include the drawbacks of HIP, discussion on also added. New topics include the drawbacks of HIP, discussion on
802.15.4 and MAC security, HIP for IoT scenarios, deployment 802.15.4 and MAC security, HIP for IoT scenarios, deployment
considerations and description of the base exchange. considerations and description of the base exchange.
16. References 15. References
16.1. Normative References 15.1. Normative References
[I-D.ietf-hip-dex] [I-D.ietf-hip-dex]
Moskowitz, R. and R. Hummen, "HIP Diet EXchange (DEX)", Moskowitz, R. and R. Hummen, "HIP Diet EXchange (DEX)",
draft-ietf-hip-dex-06 (work in progress), December 2017. draft-ietf-hip-dex-06 (work in progress), December 2017.
[I-D.ietf-hip-native-nat-traversal] [I-D.ietf-hip-native-nat-traversal]
Keranen, A., Melen, J., and M. Komu, "Native NAT Traversal Keranen, A., Melen, J., and M. Komu, "Native NAT Traversal
Mode for the Host Identity Protocol", draft-ietf-hip- Mode for the Host Identity Protocol", draft-ietf-hip-
native-nat-traversal-27 (work in progress), December 2017. native-nat-traversal-28 (work in progress), March 2018.
[RFC5482] Eggert, L. and F. Gont, "TCP User Timeout Option", [RFC5482] Eggert, L. and F. Gont, "TCP User Timeout Option",
RFC 5482, DOI 10.17487/RFC5482, March 2009, RFC 5482, DOI 10.17487/RFC5482, March 2009,
<https://www.rfc-editor.org/info/rfc5482>. <https://www.rfc-editor.org/info/rfc5482>.
[RFC6079] Camarillo, G., Nikander, P., Hautakorpi, J., Keranen, A.,
and A. Johnston, "HIP BONE: Host Identity Protocol (HIP)
Based Overlay Networking Environment (BONE)", RFC 6079,
DOI 10.17487/RFC6079, January 2011, <https://www.rfc-
editor.org/info/rfc6079>.
[RFC7086] Keranen, A., Camarillo, G., and J. Maenpaa, "Host Identity
Protocol-Based Overlay Networking Environment (HIP BONE)
Instance Specification for REsource LOcation And Discovery
(RELOAD)", RFC 7086, DOI 10.17487/RFC7086, January 2014,
<https://www.rfc-editor.org/info/rfc7086>.
[RFC7343] Laganier, J. and F. Dupont, "An IPv6 Prefix for Overlay [RFC7343] Laganier, J. and F. Dupont, "An IPv6 Prefix for Overlay
Routable Cryptographic Hash Identifiers Version 2 Routable Cryptographic Hash Identifiers Version 2
(ORCHIDv2)", RFC 7343, DOI 10.17487/RFC7343, September (ORCHIDv2)", RFC 7343, DOI 10.17487/RFC7343, September
2014, <https://www.rfc-editor.org/info/rfc7343>. 2014, <https://www.rfc-editor.org/info/rfc7343>.
[RFC7401] Moskowitz, R., Ed., Heer, T., Jokela, P., and T. [RFC7401] Moskowitz, R., Ed., Heer, T., Jokela, P., and T.
Henderson, "Host Identity Protocol Version 2 (HIPv2)", Henderson, "Host Identity Protocol Version 2 (HIPv2)",
RFC 7401, DOI 10.17487/RFC7401, April 2015, RFC 7401, DOI 10.17487/RFC7401, April 2015,
<https://www.rfc-editor.org/info/rfc7401>. <https://www.rfc-editor.org/info/rfc7401>.
skipping to change at page 35, line 47 skipping to change at page 31, line 15
[RFC8046] Henderson, T., Ed., Vogt, C., and J. Arkko, "Host Mobility [RFC8046] Henderson, T., Ed., Vogt, C., and J. Arkko, "Host Mobility
with the Host Identity Protocol", RFC 8046, with the Host Identity Protocol", RFC 8046,
DOI 10.17487/RFC8046, February 2017, <https://www.rfc- DOI 10.17487/RFC8046, February 2017, <https://www.rfc-
editor.org/info/rfc8046>. editor.org/info/rfc8046>.
[RFC8047] Henderson, T., Ed., Vogt, C., and J. Arkko, "Host [RFC8047] Henderson, T., Ed., Vogt, C., and J. Arkko, "Host
Multihoming with the Host Identity Protocol", RFC 8047, Multihoming with the Host Identity Protocol", RFC 8047,
DOI 10.17487/RFC8047, February 2017, <https://www.rfc- DOI 10.17487/RFC8047, February 2017, <https://www.rfc-
editor.org/info/rfc8047>. editor.org/info/rfc8047>.
16.2. Informative references 15.2. Informative references
[amir-hip] [amir-hip]
Amir, K., Forsgren, H., Grahn, K., Karvi, T., and G. Amir, K., Forsgren, H., Grahn, K., Karvi, T., and G.
Pulkkis, "Security and Trust of Public Key Cryptography Pulkkis, "Security and Trust of Public Key Cryptography
for HIP and HIP Multicast", International Journal of for HIP and HIP Multicast", International Journal of
Dependable and Trustworthy Information Systems (IJDTIS), Dependable and Trustworthy Information Systems (IJDTIS),
2(3), 17-35, DOI: 10.4018/jdtis.2011070102, 2013. 2(3), 17-35, DOI: 10.4018/jdtis.2011070102, 2013.
[aura-dos] [aura-dos]
Aura, T., Nikander, P., and J. Leiwo, "DOS-resistant Aura, T., Nikander, P., and J. Leiwo, "DOS-resistant
Authentication with Client Puzzles", 8th International Authentication with Client Puzzles", 8th International
Workshop on Security Protocols, pages 170-177. Springer, , Workshop on Security Protocols, pages 170-177. Springer, ,
April 2001. April 2001.
[beal-dos] [beal-dos]
Beal, J. and T. Shephard, "Deamplification of DoS Attacks Beal, J. and T. Shephard, "Deamplification of DoS Attacks
via Puzzles", , October 2004. via Puzzles", , October 2004.
[camarillo-p2psip]
Camarillo, G., Maeenpaeae, J., Keraenen, A., and V.
Anderson, "Reducing delays related to NAT traversal in
P2PSIP session establishments", IEEE Consumer
Communications and Networking Conference (CCNC), pp.
549-553 DOI: 10.1109/CCNC.2011.5766540, 2011.
[chiappa-endpoints] [chiappa-endpoints]
Chiappa, J., "Endpoints and Endpoint Names: A Proposed Chiappa, J., "Endpoints and Endpoint Names: A Proposed
Enhancement to the Internet Architecture", Enhancement to the Internet Architecture",
URL http://www.chiappa.net/~jnc/tech/endpoints.txt, 1999. URL http://www.chiappa.net/~jnc/tech/endpoints.txt, 1999.
[heer-end-host] [heer-end-host]
Heer, T., Hummen, R., Komu, M., Goetz, S., and K. Wehre, Heer, T., Hummen, R., Komu, M., Goetz, S., and K. Wehre,
"End-host Authentication and Authorization for Middleboxes "End-host Authentication and Authorization for Middleboxes
based on a Cryptographic Namespace", ICC2009 Communication based on a Cryptographic Namespace", ICC2009 Communication
and Information Systems Security Symposium, , 2009. and Information Systems Security Symposium, , 2009.
skipping to change at page 36, line 43 skipping to change at page 32, line 15
[heer-midauth] [heer-midauth]
Heer, T. and M. Komu, "End-Host Authentication for HIP Heer, T. and M. Komu, "End-Host Authentication for HIP
Middleboxes", Working draft draft-heer-hip-middle-auth-02, Middleboxes", Working draft draft-heer-hip-middle-auth-02,
September 2009. September 2009.
[henderson-vpls] [henderson-vpls]
Henderson, T. and D. Mattes, "HIP-based Virtual Private Henderson, T. and D. Mattes, "HIP-based Virtual Private
LAN Service (HIPLS)", Working draft draft-henderson-hip- LAN Service (HIPLS)", Working draft draft-henderson-hip-
vpls-07, Dec 2013. vpls-07, Dec 2013.
[hip-lte] Liyanage, M., Kumar, P., Ylianttila, M., and A. Gurtov,
"Novel secure VPN architectures for LTE backhaul
networks", Security and Communication Networks DOI
10.1002/sec.1411, November 2015.
[hip-srtp] [hip-srtp]
Tschofenig, H., Muenz, F., and M. Shanmugam, "Using SRTP Tschofenig, H., Muenz, F., and M. Shanmugam, "Using SRTP
transport format with HIP", Working draft draft- transport format with HIP", Working draft draft-
tschofenig-hiprg-hip-srtp-01, October 2005. tschofenig-hiprg-hip-srtp-01, October 2005.
[hummen] Hummen, R., Hiller, J., Henze, M., and K. Wehrle, "Slimfit [hummen] Hummen, R., Hiller, J., Henze, M., and K. Wehrle, "Slimfit
- A HIP DEX Compression Layer for the IP-based Internet of - A HIP DEX Compression Layer for the IP-based Internet of
Things", Wireless and Mobile Computing, Networking and Things", Wireless and Mobile Computing, Networking and
Communications (WiMob), 2013 IEEE 9th International Communications (WiMob), 2013 IEEE 9th International
Conference on , page 259-266. DOI: Conference on , page 259-266. DOI:
skipping to change at page 39, line 11 skipping to change at page 34, line 27
Paine, R., "Beyond HIP: The End to Hacking As We Know It", Paine, R., "Beyond HIP: The End to Hacking As We Know It",
BookSurge Publishing, ISBN: 1439256047, 9781439256046, BookSurge Publishing, ISBN: 1439256047, 9781439256046,
2009. 2009.
[pham-leap] [pham-leap]
Pham, V. and T. Aura, "Security Analysis of Leap-of-Faith Pham, V. and T. Aura, "Security Analysis of Leap-of-Faith
Protocols", Seventh ICST International Conference on Protocols", Seventh ICST International Conference on
Security and Privacy for Communication Networks, , Security and Privacy for Communication Networks, ,
September 2011. September 2011.
[ranjbar-synaptic]
Ranjbar, A., Komu, M., Salmela, P., and T. Aura,
"SynAPTIC: Secure and Persistent Connectivity for
Containers", 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), Madrid, 2017,
pp. 262-267 doi: 10.1109/CCGRID.2017.62, 2017.
[RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound, [RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
"Dynamic Updates in the Domain Name System (DNS UPDATE)", "Dynamic Updates in the Domain Name System (DNS UPDATE)",
RFC 2136, DOI 10.17487/RFC2136, April 1997, RFC 2136, DOI 10.17487/RFC2136, April 1997,
<https://www.rfc-editor.org/info/rfc2136>. <https://www.rfc-editor.org/info/rfc2136>.
[RFC2535] Eastlake 3rd, D., "Domain Name System Security [RFC2535] Eastlake 3rd, D., "Domain Name System Security
Extensions", RFC 2535, DOI 10.17487/RFC2535, March 1999, Extensions", RFC 2535, DOI 10.17487/RFC2535, March 1999,
<https://www.rfc-editor.org/info/rfc2535>. <https://www.rfc-editor.org/info/rfc2535>.
[RFC2766] Tsirtsis, G. and P. Srisuresh, "Network Address [RFC2766] Tsirtsis, G. and P. Srisuresh, "Network Address
skipping to change at page 39, line 40 skipping to change at page 35, line 15
[RFC3102] Borella, M., Lo, J., Grabelsky, D., and G. Montenegro, [RFC3102] Borella, M., Lo, J., Grabelsky, D., and G. Montenegro,
"Realm Specific IP: Framework", RFC 3102, "Realm Specific IP: Framework", RFC 3102,
DOI 10.17487/RFC3102, October 2001, <https://www.rfc- DOI 10.17487/RFC3102, October 2001, <https://www.rfc-
editor.org/info/rfc3102>. editor.org/info/rfc3102>.
[RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H. [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
Levkowetz, Ed., "Extensible Authentication Protocol Levkowetz, Ed., "Extensible Authentication Protocol
(EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004, (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
<https://www.rfc-editor.org/info/rfc3748>. <https://www.rfc-editor.org/info/rfc3748>.
[RFC3972] Aura, T., "Cryptographically Generated Addresses (CGA)",
RFC 3972, DOI 10.17487/RFC3972, March 2005,
<https://www.rfc-editor.org/info/rfc3972>.
[RFC4225] Nikander, P., Arkko, J., Aura, T., Montenegro, G., and E. [RFC4225] Nikander, P., Arkko, J., Aura, T., Montenegro, G., and E.
Nordmark, "Mobile IP Version 6 Route Optimization Security Nordmark, "Mobile IP Version 6 Route Optimization Security
Design Background", RFC 4225, DOI 10.17487/RFC4225, Design Background", RFC 4225, DOI 10.17487/RFC4225,
December 2005, <https://www.rfc-editor.org/info/rfc4225>. December 2005, <https://www.rfc-editor.org/info/rfc4225>.
[RFC4306] Kaufman, C., Ed., "Internet Key Exchange (IKEv2) [RFC4306] Kaufman, C., Ed., "Internet Key Exchange (IKEv2)
Protocol", RFC 4306, DOI 10.17487/RFC4306, December 2005, Protocol", RFC 4306, DOI 10.17487/RFC4306, December 2005,
<https://www.rfc-editor.org/info/rfc4306>. <https://www.rfc-editor.org/info/rfc4306>.
[RFC4380] Huitema, C., "Teredo: Tunneling IPv6 over UDP through
Network Address Translations (NATs)", RFC 4380,
DOI 10.17487/RFC4380, February 2006, <https://www.rfc-
editor.org/info/rfc4380>.
[RFC4423] Moskowitz, R. and P. Nikander, "Host Identity Protocol [RFC4423] Moskowitz, R. and P. Nikander, "Host Identity Protocol
(HIP) Architecture", RFC 4423, DOI 10.17487/RFC4423, May (HIP) Architecture", RFC 4423, DOI 10.17487/RFC4423, May
2006, <https://www.rfc-editor.org/info/rfc4423>. 2006, <https://www.rfc-editor.org/info/rfc4423>.
[RFC5218] Thaler, D. and B. Aboba, "What Makes for a Successful [RFC5218] Thaler, D. and B. Aboba, "What Makes for a Successful
Protocol?", RFC 5218, DOI 10.17487/RFC5218, July 2008, Protocol?", RFC 5218, DOI 10.17487/RFC5218, July 2008,
<https://www.rfc-editor.org/info/rfc5218>. <https://www.rfc-editor.org/info/rfc5218>.
[RFC5338] Henderson, T., Nikander, P., and M. Komu, "Using the Host [RFC5338] Henderson, T., Nikander, P., and M. Komu, "Using the Host
Identity Protocol with Legacy Applications", RFC 5338, Identity Protocol with Legacy Applications", RFC 5338,
skipping to change at page 40, line 45 skipping to change at page 36, line 32
<https://www.rfc-editor.org/info/rfc6317>. <https://www.rfc-editor.org/info/rfc6317>.
[RFC6537] Ahrenholz, J., "Host Identity Protocol Distributed Hash [RFC6537] Ahrenholz, J., "Host Identity Protocol Distributed Hash
Table Interface", RFC 6537, DOI 10.17487/RFC6537, February Table Interface", RFC 6537, DOI 10.17487/RFC6537, February
2012, <https://www.rfc-editor.org/info/rfc6537>. 2012, <https://www.rfc-editor.org/info/rfc6537>.
[RFC6538] Henderson, T. and A. Gurtov, "The Host Identity Protocol [RFC6538] Henderson, T. and A. Gurtov, "The Host Identity Protocol
(HIP) Experiment Report", RFC 6538, DOI 10.17487/RFC6538, (HIP) Experiment Report", RFC 6538, DOI 10.17487/RFC6538,
March 2012, <https://www.rfc-editor.org/info/rfc6538>. March 2012, <https://www.rfc-editor.org/info/rfc6538>.
[RFC7435] Dukhovni, V., "Opportunistic Security: Some Protection
Most of the Time", RFC 7435, DOI 10.17487/RFC7435,
December 2014, <https://www.rfc-editor.org/info/rfc7435>.
[sarela-bloom] [sarela-bloom]
Saerelae, M., Esteve Rothenberg, C., Zahemszky, A., Saerelae, M., Esteve Rothenberg, C., Zahemszky, A.,
Nikander, P., and J. Ott, "BloomCasting: Security in Bloom Nikander, P., and J. Ott, "BloomCasting: Security in Bloom
filter based multicast", , Lecture Notes in Computer filter based multicast", , Lecture Notes in Computer
Science 2012, , pages 1-16, Springer Berlin Heidelberg, Science 2012, , pages 1-16, Springer Berlin Heidelberg,
2012. 2012.
[schuetz-intermittent] [schuetz-intermittent]
Schuetz, S., Eggert, L., Schmid, S., and M. Brunner, Schuetz, S., Eggert, L., Schmid, S., and M. Brunner,
"Protocol enhancements for intermittently connected "Protocol enhancements for intermittently connected
skipping to change at page 41, line 19 skipping to change at page 37, line 13
2005. 2005.
[shields-hip] [shields-hip]
Shields, C. and J. Garcia-Luna-Aceves, "The HIP protocol Shields, C. and J. Garcia-Luna-Aceves, "The HIP protocol
for hierarchical multicast routing", Proceedings of the for hierarchical multicast routing", Proceedings of the
seventeenth annual ACM symposium on Principles of seventeenth annual ACM symposium on Principles of
distributed computing, pages 257-266. ACM, New York, NY, distributed computing, pages 257-266. ACM, New York, NY,
USA, ISBN: 0-89791-977-7, DOI: 10.1145/277697.277744, USA, ISBN: 0-89791-977-7, DOI: 10.1145/277697.277744,
1998. 1998.
[tempered-networks]
"Identity-Defined Network (IDN) Architecture: Unified,
Secure Networking Made Simple", White Paper , 2016.
[tritilanunt-dos] [tritilanunt-dos]
Tritilanunt, S., Boyd, C., Foo, E., and J. Nieto, Tritilanunt, S., Boyd, C., Foo, E., and J. Nieto,
"Examining the DoS Resistance of HIP", OTM Workshops (1), "Examining the DoS Resistance of HIP", OTM Workshops (1),
volume 4277 of Lecture Notes in Computer Science, pages volume 4277 of Lecture Notes in Computer Science, pages
616-625,Springer , 2006. 616-625,Springer , 2006.
[urien-rfid] [urien-rfid]
Urien, P., Chabanne, H., Bouet, M., de Cunha, D., Guyot, Urien, P., Chabanne, H., Bouet, M., de Cunha, D., Guyot,
V., Pujolle, G., Paradinas, P., Gressier, E., and J. V., Pujolle, G., Paradinas, P., Gressier, E., and J.
Susini, "HIP-based RFID Networking Architecture", IFIP Susini, "HIP-based RFID Networking Architecture", IFIP
skipping to change at page 42, line 39 skipping to change at page 38, line 31
the First International Conference on Security and Privacy the First International Conference on Security and Privacy
for Emerging Areas in Communication Networks (SecureComm for Emerging Areas in Communication Networks (SecureComm
2005). Athens, Greece. IEEE Computer Society, pages 2005). Athens, Greece. IEEE Computer Society, pages
315-326, ISBN: 0-7695-2369-2, September 2005. 315-326, ISBN: 0-7695-2369-2, September 2005.
[zhang-revocation] [zhang-revocation]
Zhang, D., Kuptsov, D., and S. Shen, "Host Identifier Zhang, D., Kuptsov, D., and S. Shen, "Host Identifier
Revocation in HIP", IRTF Working draft draft-irtf-hiprg- Revocation in HIP", IRTF Working draft draft-irtf-hiprg-
revocation-05, Mar 2012. revocation-05, Mar 2012.
Appendix A. Design considerations
A.1. Benefits of HIP
In the beginning, the network layer protocol (i.e., IP) had the
following four "classic" invariants:
1. Non-mutable: The address sent is the address received.
2. Non-mobile: The address doesn't change during the course of an
"association".
3. Reversible: A return header can always be formed by reversing the
source and destination addresses.
4. Omniscient: Each host knows what address a partner host can use
to send packets to it.
Actually, the fourth can be inferred from 1 and 3, but it is worth
mentioning explicitly for reasons that will be obvious soon if not
already.
In the current "post-classic" world, we are intentionally trying to
get rid of the second invariant (both for mobility and for multi-
homing), and we have been forced to give up the first and the fourth.
Realm Specific IP [RFC3102] is an attempt to reinstate the fourth
invariant without the first invariant. IPv6 is attempts to reinstate
the first invariant.
Few client-side systems on the Internet have DNS names that are
meaningful. That is, if they have a Fully Qualified Domain Name
(FQDN), that name typically belongs to a NAT device or a dial-up
server, and does not really identify the system itself but its
current connectivity. FQDNs (and their extensions as email names)
are application-layer names; more frequently naming services than
particular systems. This is why many systems on the Internet are not
registered in the DNS; they do not have services of interest to other
Internet hosts.
DNS names are references to IP addresses. This only demonstrates the
interrelationship of the networking and application layers. DNS, as
the Internet's only deployed and distributed database, is also the
repository of other namespaces, due in part to DNSSEC and application
specific key records. Although each namespace can be stretched (IP
with v6, DNS with KEY records), neither can adequately provide for
host authentication or act as a separation between internetworking
and transport layers.
The Host Identity (HI) namespace fills an important gap between the
IP and DNS namespaces. An interesting thing about the HI is that it
actually allows a host to give up all but the 3rd network-layer
invariant. That is to say, as long as the source and destination
addresses in the network-layer protocol are reversible, HIP takes
care of host identification, and reversibility allows a local host to
receive a packet back from a remote host. The address changes
occurring during NAT transit (non-mutable) or host movement (non-
omniscient or non-mobile) can be managed by the HIP layer.
With the exception of High-Performance Computing applications, the
Sockets API is the most common way to develop network applications.
Applications use the Sockets API either directly or indirectly
through some libraries or frameworks. However, the Sockets API is
based on the assumption of static IP addresses, and DNS with its
lifetime values was invented at later stages during the evolution of
the Internet. Hence, the Sockets API does not deal with the lifetime
of addresses [RFC6250]. As the majority of the end-user equipment is
mobile today, their addresses are effectively ephemeral, but the
Sockets API still gives a fallacious illusion of persistent IP
addresses to the unwary developer. HIP can be used to solidify this
illusion because HIP provides persistent surrogate addresses to the
application layer in the form of LSIs and HITs.
The persistent identifiers as provided by HIP are useful in multiple
scenarios (see, e.g., [ylitalo-diss] or [komu-diss], for a more
elaborate discussion):
o When a mobile host moves physically between two different WLAN
networks and obtains a new address, an application using the
identifiers remains isolated regardless of the topology changes
while the underlying HIP layer re-establishes connectivity (i.e. a
horizontal handoff).
o Similarly, the application utilizing the identifiers remains again
unaware of the topological changes when the underlying host
equipped with WLAN and cellular network interfaces switches
between the two different access technologies (i.e. a vertical
handoff).
o Even when hosts are located in private address realms,
applications can uniquely distinguish different hosts from each
other based on their identifiers. In other words, it can be
stated that HIP improves Internet transparency for the application
layer [komu-diss].
o Site renumbering events for services can occur due to corporate
mergers or acquisitions, or by changes in Internet Service
Provider. They can involve changing the entire network prefix of
an organization, which is problematic due to hard-coded addresses
in service configuration files or cached IP addresses at the
client side [RFC5887]. Considering such human errors, a site
employing location-independent identifiers as promoted by HIP may
experience fewer problems while renumbering their network.
o More agile IPv6 interoperability can be achieved, as discussed in
Section 4.4. IPv6-based applications can communicate using HITs
with IPv4-based applications that are using LSIs. Additionally,
the underlying network type (IPv4 or IPv6) becomes independent of
the addressing family of the application.
o HITs (or LSIs) can be used in IP-based access control lists as a
more secure replacement for IPv6 addresses. Besides security, HIT
based access control has two other benefits. First, the use of
HITs can potentially halve the size of access control lists
because separate rules for IPv4 are not needed [komu-diss].
Second, HIT-based configuration rules in HIP-aware middleboxes
remain static and independent of topology changes, thus
simplifying administrative efforts particularly for mobile
environments. For instance, the benefits of HIT-based access
control have been harnessed in the case of HIP-aware firewalls,
but can be utilized directly at the end-hosts as well [RFC6538].
While some of these benefits could be and have been redundantly
implemented by individual applications, providing such generic
functionality at the lower layers is useful because it reduces
software development effort and networking software bugs (as the
layer is tested with multiple applications). It also allows the
developer to focus on building the application itself rather than
delving into the intricacies of mobile networking, thus facilitating
separation of concerns.
HIP could also be realized by combining a number of different
protocols, but the complexity of the resulting software may become
substantially larger, and the interaction between multiple possibly
layered protocols may have adverse effects on latency and throughput.
It is also worth noting that virtually nothing prevents realizing the
HIP architecture, for instance, as an application-layer library,
which has been actually implemented in the past [xin-hip-lib].
However, the tradeoff in moving the HIP layer to the application
layer is that legacy applications may not be supported.
A.2. Drawbacks of HIP
In computer science, many problems can be solved with an extra layer
of indirection. However, the indirection always involves some costs
as there is no such a thing as "free lunch". In the case of HIP, the
main costs could be stated as follows:
o In general, an additional layer and a namespace always involve
some initial effort in terms of implementation, deployment and
maintenance. Some education of developers and administrators may
also be needed. However, the HIP community at the IETF has spent
years in experimenting, exploring, testing, documenting and
implementing HIP to ease the adoption costs.
o HIP introduces a need to manage HIs and requires a centralized
approach to manage HIP-aware endpoints at scale. What were
formerly IP address-based ACLs are now trusted HITs, and the HIT
to IP address mappings as well as access policies must be managed.
HIP-aware endpoints must also be able to operate autonomously to
ensure mobility and availability (an endpoint must be able to run
without having to have a persistent management connection). The
users who want this better security and mobility of HIs instead of
IP address based ACLs have to then manage this additional
'identity layer' in a non-persistent fashion. As exemplified in
Appendix A.3.5, these challenges have been already solved in an
infrastructure setting to distribute policy and manage the
mappings and trust relationships between HIP-aware endpoints.
o HIP decouples identifier and locator roles of IP addresses.
Consequently, a mapping mechanism is needed to associate them
together. A failure to map a HIT to its corresponding locator may
result in failed connectivity because a HIT is "flat" by its
nature and cannot be looked up from the hierarchically organized
DNS. HITs are flat by design due to a security tradeoff. The
more bits are allocated for the hash in the HIT, the less likely
there will be (malicious) collisions.
o From performance viewpoint, HIP control and data plane processing
introduces some overhead in terms of throughput and latency as
elaborated below.
Related to deployment drawbacks, firewalls are commonly used to
control access to various services and devices in the current
Internet. Since HIP introduces an additional namespace, it is
expected that also the HIP namespace would be filtered for unwanted
connectivity. While this can be achieved with existing tools
directly in the end-hosts, filtering at the middleboxes requires
modifications to existing firewall software or additional middleboxes
[RFC6538].
The key exchange introduces some extra latency (two round trips) in
the initial transport-layer connection establishment between two
hosts. With TCP, additional delay occurs if the underlying network
stack implementation drops the triggering SYN packet during the key
exchange. The same cost may also occur during HIP handoff
procedures. However, subsequent TCP sessions using the same HIP
association will not bear this cost (within the key lifetime). Both
the key exchange and handoff penalties can be minimized by caching
TCP packets. The latter case can further be optimized with TCP user
timeout extensions [RFC5482] as described in further detail by
Schuetz et al [schuetz-intermittent].
The most CPU-intensive operations involve the use of the asymmetric
keys and Diffie-Hellman key derivation at the control plane, but this
occurs only during the key exchange, its maintenance (handoffs,
refreshing of key material) and tear-down procedures of HIP
associations. The data plane is typically implemented with ESP
because it has a smaller overhead due to symmetric key encryption.
Naturally, even ESP involves some overhead in terms of latency
(processing costs) and throughput (tunneling) (see, e.g.,
[ylitalo-diss] for a performance evaluation).
A.3. Deployment and adoption considerations
This section describes some deployment and adoption considerations
related to HIP from a technical perspective.
A.3.1. Deployment analysis
HIP has been adapted and deployed in an industrial control network in
a production factory, in which HIP's strong network layer identity
supports the secure coexistence of the control network with many
untrusted network devices operated by third-party vendors
[paine-hip]. Similarly, HIP has also been included in a security
product to support layer-two Virtual Private Networks
[henderson-vpls] to enable security zones in a supervisory control
and data acquisition (SCADA) network. However, HIP has not been a
"wild success" [RFC5218] in the Internet as argued by Levae et al
[leva-barriers]. Here, we briefly highlight some of their findings
based on interviews with 19 experts from the industry and academia.
From a marketing perspective, the demand for HIP has been low and
substitute technologies have been favored. Another identified reason
has been that some technical misconceptions related to the early
stages of HIP specifications still persist. Two identified
misconceptions are that HIP does not support NAT traversal, and that
HIP must be implemented in the OS kernel. Both of these claims are
untrue; HIP does have NAT traversal extensions
[I-D.ietf-hip-native-nat-traversal], and kernel modifications can be
avoided with modern operating systems by diverting packets for
userspace processing.
The analysis by Levae et al clarifies infrastructural requirements
for HIP. In a minimal set up, a client and server machine have to
run HIP software. However, to avoid manual configurations, usually
DNS records for HIP are set up. For instance, the popular DNS server
software Bind9 does not require any changes to accommodate DNS
records for HIP because they can be supported in binary format in its
configuration files [RFC6538]. HIP rendezvous servers and firewalls
are optional. No changes are required to network address points,
NATs, edge routers or core networks. HIP may require holes in legacy
firewalls.
The analysis also clarifies the requirements for the host components
that consist of three parts. First, a HIP control plane component is
required, typically implemented as a userspace daemon. Second, a
data plane component is needed. Most HIP implementations utilize the
so called BEET mode of ESP that has been available since Linux kernel
2.6.27, but the BEET mode is also included as a userspace component
in a few of the implementations. Third, HIP systems usually provide
a DNS proxy for the local host that translates HIP DNS records to
LSIs and HITs, and communicates the corresponding locators to HIP
userspace daemon. While the third component is not mandatory, it is
very useful for avoiding manual configurations. The three components
are further described in the HIP experiment report [RFC6538].
Based on the interviews, Levae et al suggest further directions to
facilitate HIP deployment. Transitioning a number of HIP
specifications to the standards track in IETF has already taken
place, but the authors suggest other additional measures based on the
interviews. As a more radical measure, the authors suggest to
implement HIP as a purely application-layer library [xin-hip-lib] or
other kind of middleware. On the other hand, more conservative
measures include focusing on private deployments controlled by a
single stakeholder. As a more concrete example of such a scenario,
HIP could be used by a single service provider to facilitate secure
connectivity between its servers [komu-cloud].
A.3.2. HIP in 802.15.4 networks
The IEEE 802 standards have been defining MAC layered security. Many
of these standards use EAP [RFC3748] as a Key Management System (KMS)
transport, but some like IEEE 802.15.4 [IEEE.802-15-4.2011] leave the
KMS and its transport as "Out of Scope".
HIP is well suited as a KMS in these environments:
o HIP is independent of IP addressing and can be directly
transported over any network protocol.
o Master Keys in 802 protocols are commonly pair-based with group
keys transported from the group controller using pair-wise keys.
o AdHoc 802 networks can be better served by a peer-to-peer KMS than
the EAP client/server model.
o Some devices are very memory constrained and a common KMS for both
MAC and IP security represents a considerable code savings.
A.3.3. HIP and Internet of Things
HIP requires certain amount computational resources from a device due
to cryptographic processing. HIP scales down to phones and small
system-on-chip devices (such as Raspberry Pis, Intel Edison), but
small sensors operating with small batteries have remained
problematic. Different extensions to the HIP have been developed to
scale HIP down to smaller devices, typically with different security
tradeoffs. For example, the non-cryptographic identifiers have been
proposed in RFID scenarios. The slimfit approach [hummen] proposes a
compression layer for HIP to make it more suitable for constrained
networks. The approach is applied to a light-weight version of HIP
(i.e. "Diet HIP") in order to scale down to small sensors.
The HIP Diet Exchange [I-D.ietf-hip-dex] design aims at reducing the
overhead of the employed cryptographic primitives by omitting public-
key signatures and hash functions. In doing so, the main goal is to
still deliver similar security properties to the Base Exchange (BEX).
DEX is primarily designed for computation or memory- constrained
sensor/actuator devices. Like BEX, it is expected to be used
together with a suitable security protocol such as the Encapsulated
Security Payload (ESP) for the protection of upper layer protocol
data. In addition, DEX can also be used as a keying mechanism for
security primitives at the MAC layer, e.g., for IEEE 802.15.9
networks ([IEEE.802-15-9].
The main differences between HIP BEX and DEX are:
1. Minimum collection of cryptographic primitives to reduce the
protocol overhead.
* Static Elliptic Curve Diffie-Hellman key pairs for peer
authentication and encryption of the session key.
* AES-CTR for symmetric encryption and AES-CMAC for MACing
function.
* A simple fold function for HIT generation.
2. Forfeit of Perfect Forward Secrecy with the dropping of an
ephemeral Diffie-Hellman key agreement.
3. Forfeit of digital signatures with the removal of a hash
function. Reliance on ECDH derived key used in HIP_MAC to prove
ownership of the private key.
4. Diffie-Hellman derived key ONLY used to protect the HIP packets.
A separate secret exchange within the HIP packets creates the
session key(s).
5. Optional retransmission strategy tailored to handle the
potentially extensive processing time of the employed
cryptographic operations on computationally constrained devices.
A.3.4. Infrastructure Applications
HIP experimentation report [RFC6538] enumerates a number of client
and server applications that have been trialed with HIP. Based on
the report, this section highlights and complements some potential
ways how HIP could be exploited in existing infrastructure such as
routers, gateways and proxies.
HIP has been successfully used with forward web proxies (i.e.,
client-side proxies). HIP was used between a client host (web
browser) and a forward proxy (Apache server) that terminated the HIP/
ESP-tunnel. The forward web proxy translated HIP-based traffic
originating from the client into non-HIP traffic towards any web
server in the Internet. Consequently, the HIP-capable client could
communicate with HIP-incapable web servers. This way, the client
could utilize mobility support as provided by HIP while using the
fixed IP address of the web proxy, for instance, to access services
that were allowed only from the IP address range of the proxy.
HIP has also been experimented with reverse web proxies (i.e. server-
side proxies) as described in more detail in [komu-cloud]. In this
scenario, a HIP-incapable client accessed a HIP-capable web service
via an intermediary load balancer (that was a web based load balancer
implementation called HAProxy). The load balancer translated non-HIP
traffic originating from the client into HIP-based traffic for the
web service (consisting of front-end and back-end servers). Both the
load balancer and the web service were located in a datacenter. One
of the key benefits for encrypting the web traffic with HIP in this
scenario was to support a private-public cloud scenario (i.e. hybrid
cloud) where the load balancer, front-end servers and back-end
servers can be located in different datacenters and, thus, the
traffic needs to protected when it passes through potentially
insecure networks between the borders of the private and public
clouds.
While HIP could be used to secure access to intermediary devices
(e.g., access to switches with legacy telnet), it has also been used
to secure intermittent connectivity between middlebox infrastructure.
For instance, earlier research [komu-mitigation] utilized HIP between
Secure Mail Transport Protocol (SMTP) servers in order to exploit the
computational puzzles of HIP as a spam mitigation mechanism. A
rather obvious practical challenge in this approach was the lack of
HIP adoption on existing SMTP servers.
To avoid deployment hurdles with existing infrastructure, HIP could
be applied in the context of new protocols with little deployment.
Namely, HIP has been experimented in the context of a new protocol,
peer-to-peer SIP [camarillo-p2psip]. The work has resulted in a
number of related RFCs [RFC6078], [RFC6079], [RFC7086]. The key idea
in the research work was to avoid redundant, time consuming ICE
procedures by grouping different connections (i.e. SIP and media
streams) together using the low-layer HIP which executes NAT
traversal procedures only once per host. An interesting aspect in
the approach was the use of P2P-SIP infrastructure as rendezvous
servers for HIP control plane instead of utilizing the traditional
HIP rendezvous services [RFC8004].
Researchers have proposed to use HIP in cellular networks as a
mobility, multihoming and security solution. [hip-lte] provides a
security analysis and simulation measurements of using HIP in Long
Term Evolution (LTE) backhaul networks.
HIP has been experimented with securing cloud internal connectivity.
First with virtual machines [komu-cloud] and then later also between
Linux containers [ranjbar-synaptic]. In both cases, HIP was
suggested as a solution NAT traversal that could be utilized both
internally by a cloud network and between multi-cloud deployments.
Specifically in the former case, HIP was beneficial sustaining
connectivity with a virtual machine while it migrates to a new
location. In the latter case, Software-Defined Networking (SDN)
controller acted as rendezvous server for HIP-capable containers.
The controller enforced strong replay protection by adding middlebox
nonces [heer-end-host] to the passing HIP base exchange and UPDATE
messages.
A.3.5. Management of Identities in a Commercial Product
Tempered Networks provides HIP-based products. They refer to their
platform as Identity-Defined Networking (IDN) [tempered-networks]
because of HIP's identity-first networking architecture. Their
objective has been to make it simple and non-disruptive to deploy HIP
enabled services widely in production environments with the purpose
of enabling transparent device authentication and authorization,
cloaking, segmentation, and end-to-end networking. The goal is to
eliminate much of the circular dependencies, exploits, and layered
complexity of traditional "address-defined networking" that prevents
mobility and verifiable device access control. The products in the
portfolio of Tempered Networks utilize HIP as follows:
o HIP Switches / Gateways - these are physical or virtual appliances
that serve as the HIP gateway and policy enforcement point for non
HIP-aware applications and devices located behind it. No IP or
infrastructure changes are required in order to connect, cloak,
and protect the non-HIP aware devices. Currently known supported
platforms for HIP gateways are: x86 and ARM chipsets, ESXi, Hyper-
V, KVM, AWS, Azure, and Google clouds.
o HIP Relays / Rendezvous - are physical or virtual appliances that
serve as identity based routers authorizing and bridging HIP
endpoints without decrypting the HIP session. A HIP Relay can be
deployed as a standalone appliance or in a cluster for horizontal
scaling. All HIP aware endpoints and the devices they're
connecting and protecting can remain privately addressed, The
appliances eliminate IP conflicts, tunnel through NAT and CGNAT,
and require no changes to the underlay infrastructure. The only
requirement is that a HIP endpoint should have outbound access to
the Internet and that a HIP Relay should have a public address.
o HIP-Aware Clients and Servers - software that installs in the
host's network stack and enforces policy for that host. HIP
clients support split tunneling. Both HIP client and HIP server
can interface with the local host firewall and HIP Server can be
locked down to listen only on the port used for HIP, making the
server invisible from unauthorized devices. Currently known
supported platforms are Windows, OSX, iOS, Android, Ubuntu, CentOS
and other Linux derivatives.
o Policy Orchestration Managers - a physical or virtual appliance
that serves as the engine to define and distribute network and
security policy (HI and IP mappings, overlay networks and
whitelist policies etc.) to HIP-aware endpoints. Orchestration
does not need to persist to the HIP endpoints and vice versa
allowing for autonomous host networking and security.
A.4. Answers to NSRG questions
The IRTF Name Space Research Group has posed a number of evaluating
questions in their report [nsrg-report]. In this section, we provide
answers to these questions.
1. How would a stack name improve the overall functionality of the
Internet?
HIP decouples the internetworking layer from the transport
layer, allowing each to evolve separately. The decoupling
makes end-host mobility and multi-homing easier, also across
IPv4 and IPv6 networks. HIs make network renumbering easier,
and they also make process migration and clustered servers
easier to implement. Furthermore, being cryptographic in
nature, they provide the basis for solving the security
problems related to end-host mobility and multi-homing.
2. What does a stack name look like?
A HI is a cryptographic public key. However, instead of using
the keys directly, most protocols use a fixed-size hash of the
public key.
3. What is its lifetime?
HIP provides both stable and temporary Host Identifiers.
Stable HIs are typically long-lived, with a lifetime of years
or more. The lifetime of temporary HIs depends on how long
the upper-layer connections and applications need them, and
can range from a few seconds to years.
4. Where does it live in the stack?
The HIs live between the transport and internetworking layers.
5. How is it used on the end points?
The Host Identifiers may be used directly or indirectly (in
the form of HITs or LSIs) by applications when they access
network services. Additionally, the Host Identifiers, as
public keys, are used in the built-in key agreement protocol,
called the HIP base exchange, to authenticate the hosts to
each other.
6. What administrative infrastructure is needed to support it?
In some environments, it is possible to use HIP
opportunistically, without any infrastructure. However, to
gain full benefit from HIP, the HIs must be stored in the DNS
or a PKI, and the rendezvous mechanism is needed [RFC8005].
7. If we add an additional layer would it make the address list in
SCTP unnecessary?
Yes
8. What additional security benefits would a new naming scheme
offer?
HIP reduces dependency on IP addresses, making the so-called
address ownership [Nik2001] problems easier to solve. In
practice, HIP provides security for end-host mobility and
multi-homing. Furthermore, since HIP Host Identifiers are
public keys, standard public key certificate infrastructures
can be applied on the top of HIP.
9. What would the resolution mechanisms be, or what characteristics
of a resolution mechanisms would be required?
For most purposes, an approach where DNS names are resolved
simultaneously to HIs and IP addresses is sufficient.
However, if it becomes necessary to resolve HIs into IP
addresses or back to DNS names, a flat resolution
infrastructure is needed. Such an infrastructure could be
based on the ideas of Distributed Hash Tables, but would
require significant new development and deployment.
Authors' Addresses Authors' Addresses
Robert Moskowitz (editor) Robert Moskowitz (editor)
HTT Consulting HTT Consulting
Oak Park Oak Park
Michigan Michigan
USA USA
Email: rgm@labs.htt-consult.com Email: rgm@labs.htt-consult.com
Miika Komu Miika Komu
Ericsson Ericsson
Hirsalantie 11 Hirsalantie 11
02420 Jorvas 02420 Jorvas
Finland Finland
Email: miika.komu@ericsson.com Email: miika.komu@ericsson.com
 End of changes. 83 change blocks. 
586 lines changed or deleted 973 lines changed or added

This html diff was produced by rfcdiff 1.47. The latest version is available from http://tools.ietf.org/tools/rfcdiff/