draft-ietf-netconf-server-model-07.txt   draft-ietf-netconf-server-model-08.txt 
NETCONF Working Group K. Watsen NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks Internet-Draft Juniper Networks
Intended status: Standards Track J. Schoenwaelder Intended status: Standards Track J. Schoenwaelder
Expires: January 7, 2016 Jacobs University Bremen Expires: April 11, 2016 Jacobs University Bremen
July 6, 2015 October 9, 2015
NETCONF Server and RESTCONF Server Configuration Models NETCONF Server and RESTCONF Server Configuration Models
draft-ietf-netconf-server-model-07 draft-ietf-netconf-server-model-08
Abstract Abstract
This draft defines a NETCONF server configuration data model and a This draft defines a NETCONF server configuration data model and a
RESTCONF server configuration data model. These data models enable RESTCONF server configuration data model. These data models enable
configuration of the NETCONF and RESTCONF services themselves, configuration of the NETCONF and RESTCONF services themselves,
including which transports are supported, what ports the servers including which transports are supported, what ports the servers
listen on, call-home parameters, client authentication, and other listen on, call-home parameters, client authentication, and related
related configuration parameters. parameters.
Editorial Note (To be removed by RFC Editor) Editorial Note (To be removed by RFC Editor)
This draft contains many placeholder values that need to be replaced This draft contains many placeholder values that need to be replaced
with finalized values at the time of publication. This note with finalized values at the time of publication. This note
summarizes all of the substitutions that are needed. Please note summarizes all of the substitutions that are needed. Please note
that no other RFC Editor instructions are specified anywhere else in that no other RFC Editor instructions are specified anywhere else in
this document. this document.
This document contains references to other drafts in progress, both This document contains references to other drafts in progress, both
skipping to change at page 1, line 47 skipping to change at page 1, line 47
Artwork in this document contains shorthand references to drafts in Artwork in this document contains shorthand references to drafts in
progress. Please apply the following replacements: progress. Please apply the following replacements:
o "VVVV" --> the assigned RFC value for this draft o "VVVV" --> the assigned RFC value for this draft
o "XXXX" --> the assigned RFC value for draft-ietf-netconf-restconf o "XXXX" --> the assigned RFC value for draft-ietf-netconf-restconf
o "YYYY" --> the assigned RFC value for draft-ietf-netconf-call-home o "YYYY" --> the assigned RFC value for draft-ietf-netconf-call-home
o "ZZZZ" --> the assigned RFC value for draft-thomson-httpbis-cant
Artwork in this document contains placeholder values for ports Artwork in this document contains placeholder values for ports
pending IANA assignment from "draft-ietf-netconf-call-home". Please pending IANA assignment from "draft-ietf-netconf-call-home". Please
apply the following replacements: apply the following replacements:
o "7777" --> the assigned port value for "netconf-ch-ssh" o "7777" --> the assigned port value for "netconf-ch-ssh"
o "8888" --> the assigned port value for "netconf-ch-tls" o "8888" --> the assigned port value for "netconf-ch-tls"
o "9999" --> the assigned port value for "restconf-ch-tls" o "9999" --> the assigned port value for "restconf-ch-tls"
Artwork in this document contains placeholder values for the date of Artwork in this document contains placeholder values for the date of
publication of this draft. Please apply the following replacement: publication of this draft. Please apply the following replacement:
o "2015-07-06" --> the publication date of this draft o "2015-10-09" --> the publication date of this draft
The following two Appendix sections are to be removed prior to The following two Appendix sections are to be removed prior to
publication: publication:
o Appendix B. Change Log o Appendix B. Change Log
o Appendix C. Open Issues o Appendix C. Open Issues
Status of This Memo Status of This Memo
skipping to change at page 2, line 41 skipping to change at page 2, line 38
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet- working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/. Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
This Internet-Draft will expire on January 7, 2016. This Internet-Draft will expire on April 11, 2016.
Copyright Notice Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License. described in the Simplified BSD License.
Table of Contents Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 4 1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Tree Diagrams . . . . . . . . . . . . . . . . . . . . . . 5 1.2. Tree Diagrams . . . . . . . . . . . . . . . . . . . . . . 4
2. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1. Support all NETCONF and RESTCONF transports . . . . . . . 5 2.1. Support all NETCONF and RESTCONF transports . . . . . . . 5
2.2. Enable each transport to select which keys to use . . . . 5 2.2. Enable each transport to select which keys to use . . . . 5
2.3. Support authenticating NETCONF/RESTCONF clients 2.3. Support authenticating NETCONF/RESTCONF clients
certificates . . . . . . . . . . . . . . . . . . . . . . 6 certificates . . . . . . . . . . . . . . . . . . . . . . 5
2.4. Support mapping authenticated NETCONF/RESTCONF client 2.4. Support mapping authenticated NETCONF/RESTCONF client
certificates to usernames . . . . . . . . . . . . . . . . 6 certificates to usernames . . . . . . . . . . . . . . . . 5
2.5. Support both listening for connections and call home . . 6 2.5. Support both listening for connections and call home . . 6
2.6. For Call Home connections . . . . . . . . . . . . . . . . 6 2.6. For Call Home connections . . . . . . . . . . . . . . . . 6
2.6.1. Support more than one NETCONF/RESTCONF client . . . . 6 2.6.1. Support more than one NETCONF/RESTCONF client . . . . 6
2.6.2. Support NETCONF/RESTCONF clients having more than one 2.6.2. Support NETCONF/RESTCONF clients having more than one
endpoint . . . . . . . . . . . . . . . . . . . . . . 6 endpoint . . . . . . . . . . . . . . . . . . . . . . 6
2.6.3. Support a reconnection strategy . . . . . . . . . . . 7 2.6.3. Support a reconnection strategy . . . . . . . . . . . 6
2.6.4. Support both persistent and periodic connections . . 7 2.6.4. Support both persistent and periodic connections . . 6
2.6.5. Reconnection strategy for periodic connections . . . 7 2.6.5. Reconnection strategy for periodic connections . . . 7
2.6.6. Keep-alives for persistent connections . . . . . . . 7 2.6.6. Keep-alives for persistent connections . . . . . . . 7
2.6.7. Customizations for periodic connections . . . . . . . 8 2.6.7. Customizations for periodic connections . . . . . . . 7
3. The NETCONF Server Model . . . . . . . . . . . . . . . . . . 8 3. High-Level Design . . . . . . . . . . . . . . . . . . . . . . 7
3.1. Tree Diagram . . . . . . . . . . . . . . . . . . . . . . 8 4. Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2. Example Usage . . . . . . . . . . . . . . . . . . . . . . 9 4.1. The Keychain Model . . . . . . . . . . . . . . . . . . . 8
3.2.1. Configuring SSH Transport . . . . . . . . . . . . . . 10 4.1.1. Tree Diagram . . . . . . . . . . . . . . . . . . . . 9
3.2.2. Configuring TLS Transport . . . . . . . . . . . . . . 11 4.1.2. Example Usage . . . . . . . . . . . . . . . . . . . . 9
3.3. YANG Model . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.3. YANG Model . . . . . . . . . . . . . . . . . . . . . 15
4. The RESTCONF Server Model . . . . . . . . . . . . . . . . . . 26 4.2. The SSH Server Model . . . . . . . . . . . . . . . . . . 20
4.1. Tree Diagram . . . . . . . . . . . . . . . . . . . . . . 26 4.2.1. Tree Diagram . . . . . . . . . . . . . . . . . . . . 21
4.2. Example Usage . . . . . . . . . . . . . . . . . . . . . . 27 4.2.2. Example Usage . . . . . . . . . . . . . . . . . . . . 21
4.2.1. Configuring TLS Transport . . . . . . . . . . . . . . 27 4.2.3. YANG Model . . . . . . . . . . . . . . . . . . . . . 22
4.3. YANG Model . . . . . . . . . . . . . . . . . . . . . . . 28 4.3. The TLS Server Model . . . . . . . . . . . . . . . . . . 26
5. Security Considerations . . . . . . . . . . . . . . . . . . . 37 4.3.1. Tree Diagram . . . . . . . . . . . . . . . . . . . . 26
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 38 4.3.2. Example Usage . . . . . . . . . . . . . . . . . . . . 27
7. Other Considerations . . . . . . . . . . . . . . . . . . . . 39 4.3.3. YANG Model . . . . . . . . . . . . . . . . . . . . . 27
8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 39 4.4. The NETCONF Server Model . . . . . . . . . . . . . . . . 31
9. References . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4.1. Tree Diagram . . . . . . . . . . . . . . . . . . . . 31
9.1. Normative References . . . . . . . . . . . . . . . . . . 39 4.4.2. Example Usage . . . . . . . . . . . . . . . . . . . . 33
9.2. Informative References . . . . . . . . . . . . . . . . . 40 4.4.3. YANG Model . . . . . . . . . . . . . . . . . . . . . 37
Appendix A. Alternative solution addressing Issue #49 . . . . . 41 4.5. The RESTCONF Server Model . . . . . . . . . . . . . . . . 47
A.1. The Keychain Model . . . . . . . . . . . . . . . . . . . 41 4.5.1. Tree Diagram . . . . . . . . . . . . . . . . . . . . 47
A.1.1. Tree Diagram . . . . . . . . . . . . . . . . . . . . 41 4.5.2. Example Usage . . . . . . . . . . . . . . . . . . . . 49
A.1.2. Example Usage . . . . . . . . . . . . . . . . . . . . 42 4.5.3. YANG Model . . . . . . . . . . . . . . . . . . . . . 51
A.1.3. YANG Model . . . . . . . . . . . . . . . . . . . . . 45 5. Security Considerations . . . . . . . . . . . . . . . . . . . 59
A.2. The SSH Server Model . . . . . . . . . . . . . . . . . . 52 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 59
A.2.1. Tree Diagram . . . . . . . . . . . . . . . . . . . . 52 7. Other Considerations . . . . . . . . . . . . . . . . . . . . 60
A.2.2. Example Usage . . . . . . . . . . . . . . . . . . . . 53 8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 60
A.2.3. YANG Model . . . . . . . . . . . . . . . . . . . . . 53 9. References . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.3. The TLS Server Model . . . . . . . . . . . . . . . . . . 56 9.1. Normative References . . . . . . . . . . . . . . . . . . 61
A.3.1. Tree Diagram . . . . . . . . . . . . . . . . . . . . 56 9.2. Informative References . . . . . . . . . . . . . . . . . 61
A.3.2. Example Usage . . . . . . . . . . . . . . . . . . . . 57 Appendix A. Change Log . . . . . . . . . . . . . . . . . . . . . 62
A.3.3. YANG Model . . . . . . . . . . . . . . . . . . . . . 57 A.1. 00 to 01 . . . . . . . . . . . . . . . . . . . . . . . . 62
A.4. The NETCONF Server Model . . . . . . . . . . . . . . . . 60 A.2. 01 to 02 . . . . . . . . . . . . . . . . . . . . . . . . 62
A.4.1. Tree Diagram . . . . . . . . . . . . . . . . . . . . 60 A.3. 02 to 03 . . . . . . . . . . . . . . . . . . . . . . . . 62
A.4.2. Example Usage . . . . . . . . . . . . . . . . . . . . 62 A.4. 03 to 04 . . . . . . . . . . . . . . . . . . . . . . . . 62
A.4.3. YANG Model . . . . . . . . . . . . . . . . . . . . . 64 A.5. 04 to 05 . . . . . . . . . . . . . . . . . . . . . . . . 63
A.5. The RESTCONF Server Model . . . . . . . . . . . . . . . . 75 A.6. 05 to 06 . . . . . . . . . . . . . . . . . . . . . . . . 63
A.5.1. Tree Diagram . . . . . . . . . . . . . . . . . . . . 75 A.7. 06 to 07 . . . . . . . . . . . . . . . . . . . . . . . . 63
A.5.2. Example Usage . . . . . . . . . . . . . . . . . . . . 76 A.8. 07 to 08 . . . . . . . . . . . . . . . . . . . . . . . . 64
A.5.3. YANG Model . . . . . . . . . . . . . . . . . . . . . 76 Appendix B. Open Issues . . . . . . . . . . . . . . . . . . . . 65
Appendix B. Change Log . . . . . . . . . . . . . . . . . . . . . 84
B.1. 00 to 01 . . . . . . . . . . . . . . . . . . . . . . . . 84
B.2. 01 to 02 . . . . . . . . . . . . . . . . . . . . . . . . 84
B.3. 02 to 03 . . . . . . . . . . . . . . . . . . . . . . . . 84
B.4. 03 to 04 . . . . . . . . . . . . . . . . . . . . . . . . 84
B.5. 04 to 05 . . . . . . . . . . . . . . . . . . . . . . . . 85
B.6. 05 to 06 . . . . . . . . . . . . . . . . . . . . . . . . 85
B.7. 06 to 07 . . . . . . . . . . . . . . . . . . . . . . . . 86
Appendix C. Open Issues . . . . . . . . . . . . . . . . . . . . 87
1. Introduction 1. Introduction
This draft defines a NETCONF [RFC6241] server configuration data This draft defines a NETCONF [RFC6241] server configuration data
model and a RESTCONF [draft-ietf-netconf-restconf] server model and a RESTCONF [draft-ietf-netconf-restconf] server
configuration data model. These data models enable configuration of configuration data model. These data models enable configuration of
the NETCONF and RESTCONF services themselves, including which the NETCONF and RESTCONF services themselves, including which
transports are supported, what ports the servers listen on, call-home transports are supported, what ports the servers listen on, call-home
parameters, client authentication, and other related configuration parameters, client authentication, and related parameters.
parameters.
1.1. Terminology 1.1. Terminology
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119]. document are to be interpreted as described in RFC 2119 [RFC2119].
1.2. Tree Diagrams 1.2. Tree Diagrams
A simplified graphical representation of the data models is used in A simplified graphical representation of the data models is used in
skipping to change at page 7, line 14 skipping to change at page 6, line 46
server to initiate call home connections, it should be able to server to initiate call home connections, it should be able to
connect to any of the client's endpoints. connect to any of the client's endpoints.
2.6.3. Support a reconnection strategy 2.6.3. Support a reconnection strategy
Assuming a NETCONF/RESTCONF client has more than one endpoint, then Assuming a NETCONF/RESTCONF client has more than one endpoint, then
it becomes necessary to configure how a NETCONF/RESTCONF server it becomes necessary to configure how a NETCONF/RESTCONF server
should reconnect to the client should it lose its connection to one should reconnect to the client should it lose its connection to one
the client's endpoints. For instance, the NETCONF/RESTCONF server the client's endpoints. For instance, the NETCONF/RESTCONF server
may start with first endpoint defined in a user-ordered list of may start with first endpoint defined in a user-ordered list of
endpoints or with thei last endpoints it was connected to. endpoints or with the last endpoints it was connected to.
2.6.4. Support both persistent and periodic connections 2.6.4. Support both persistent and periodic connections
NETCONF/RESTCONF clients may vary greatly on how frequently they need NETCONF/RESTCONF clients may vary greatly on how frequently they need
to interact with a NETCONF/RESTCONF server, how responsive to interact with a NETCONF/RESTCONF server, how responsive
interactions need to be, and how many simultaneous connections they interactions need to be, and how many simultaneous connections they
can support. Some clients may need a persistent connection to can support. Some clients may need a persistent connection to
servers to optimize real-time interactions, while others prefer servers to optimize real-time interactions, while others prefer
periodic interactions in order to minimize resource requirements. periodic interactions in order to minimize resource requirements.
Therefore, when it is necessary for server to initiate connections, Therefore, when it is necessary for server to initiate connections,
skipping to change at page 8, line 14 skipping to change at page 7, line 41
2.6.7. Customizations for periodic connections 2.6.7. Customizations for periodic connections
If a periodic connection is desired, it is necessary for the NETCONF/ If a periodic connection is desired, it is necessary for the NETCONF/
RESTCONF server to know how often it should connect. This frequency RESTCONF server to know how often it should connect. This frequency
determines the maximum amount of time a NETCONF/RESTCONF client may determines the maximum amount of time a NETCONF/RESTCONF client may
have to wait to send data to a server. A server may connect to a have to wait to send data to a server. A server may connect to a
client before this interval expires if desired (e.g., to send data to client before this interval expires if desired (e.g., to send data to
a client). a client).
3. The NETCONF Server Model 3. High-Level Design
3.1. Tree Diagram
module: ietf-netconf-server
+--rw netconf-server
+--rw session-options
| +--rw hello-timeout? uint16
+--rw listen {(ssh-listen or tls-listen)}?
| +--rw max-sessions? uint16
| +--rw idle-timeout? uint16
| +--rw endpoint* [name]
| +--rw name string
| +--rw (transport)
| +--:(ssh) {ssh-listen}?
| | +--rw ssh
| | +--rw address? inet:ip-address
| | +--rw port? inet:port-number
| | +--rw host-keys
| | +--rw host-key* string
| +--:(tls) {tls-listen}?
| +--rw tls
| +--rw address? inet:ip-address
| +--rw port? inet:port-number
| +--rw certificates
| +--rw certificate* string
+--rw call-home {(ssh-call-home or tls-call-home)}?
| +--rw netconf-client* [name]
| +--rw name string
| +--rw (transport)
| | +--:(ssh) {ssh-call-home}?
| | | +--rw ssh
| | | +--rw endpoints
| | | | +--rw endpoint* [name]
| | | | +--rw name string
| | | | +--rw address inet:host
| | | | +--rw port? inet:port-number
| | | +--rw host-keys
| | | +--rw host-key* string
| | +--:(tls) {tls-call-home}?
| | +--rw tls
| | +--rw endpoints
| | | +--rw endpoint* [name]
| | | +--rw name string
| | | +--rw address inet:host
| | | +--rw port? inet:port-number
| | +--rw certificates
| | +--rw certificate* string
| +--rw connection-type
| | +--rw (connection-type)?
| | +--:(persistent-connection)
| | | +--rw persistent!
| | | +--rw idle-timeout? uint32
| | | +--rw keep-alives
| | | +--rw max-wait? uint16
| | | +--rw max-attempts? uint8
| | +--:(periodic-connection)
| | +--rw periodic!
| | +--rw idle-timeout? uint16
| | +--rw reconnect_timeout? uint16
| +--rw reconnect-strategy
| +--rw start-with? enumeration
| +--rw max-attempts? uint8
+--rw ssh {(ssh-listen or ssh-call-home)}?
| +--rw x509 {ssh-x509-certs}?
| +--rw trusted-ca-certs
| | +--rw trusted-ca-cert* binary
| +--rw trusted-client-certs
| +--rw trusted-client-cert* binary
+--rw tls {(tls-listen or tls-call-home)}?
+--rw client-auth
+--rw trusted-ca-certs
| +--rw trusted-ca-cert* binary
+--rw trusted-client-certs
| +--rw trusted-client-cert* binary
+--rw cert-maps
+--rw cert-to-name* [id]
+--rw id uint32
+--rw fingerprint x509c2n:tls-fingerprint
+--rw map-type identityref
+--rw name string
3.2. Example Usage
3.2.1. Configuring SSH Transport
The following example illustrates the <get> response from a NETCONF
server that only supports SSH, both listening for incoming
connections as well as calling home to a single NETCONF/RESTCONF
client having two endpoints.
<netconf-server xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-server">
<listen>
<endpoint>
<name>netconf/ssh</name>
<ssh>
<address>11.22.33.44</address>
<host-keys>
<host-key>my-rsa-key</host-key>
<host-key>my-dss-key</host-key>
</host-keys>
</ssh>
</endpoint>
</listen>
<call-home>
<netconf-client>
<name>config-mgr</name>
<ssh>
<endpoints>
<endpoint>
<name>east-data-center</name>
<address>11.22.33.44</address>
</endpoint>
<endpoint>
<name>west-data-center</name>
<address>55.66.77.88</address>
</endpoint>
</endpoints>
<host-keys>
<host-key>my-call-home-x509-key</host-key>
</host-keys>
</ssh>
</netconf-client>
</call-home>
<ssh>
<x509>
<trusted-ca-certs>
<trusted-ca-cert>
QW4gRWFzdGVyIGVnZywgZm9yIHRob3NlIHdobyBtaWdodCBsb29rICA6KQo=
</trusted-ca-cert>
</trusted-ca-certs>
<trusted-client-certs>
<trusted-client-cert>
SSBhbSB0aGUgZWdnIG1hbiwgdGhleSBhcmUgdGhlIGVnZyBtZW4uCg==
</trusted-client-cert>
<trusted-client-cert>
SSBhbSB0aGUgd2FscnVzLCBnb28gZ29vIGcnam9vYi4K
</trusted-client-cert>
</trusted-client-certs>
</x509>
</ssh>
</netconf-server>
3.2.2. Configuring TLS Transport
The following example illustrates the <get> response from a NETCONF
server that only supports TLS, both listening for incoming
connections as well as calling home to a single NETCONF/RESTCONF
client having two endpoints. Please note also the configurations for
authenticating client certificates and mappings authenticated
certificates to NETCONF user names.
<netconf-server xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-server"
xmlns:x509c2n="urn:ietf:params:xml:ns:yang:ietf-x509-cert-to-name">
<listen>
<endpoint>
<name>netconf/tls</name>
<tls>
<address>11.22.33.44</address>
<certificates>
<certificate>fw1.east.example.com</certificate>
</certificates>
</tls>
</endpoint>
</listen>
<call-home>
<netconf-client>
<name>config-mgr</name>
<tls>
<endpoints>
<endpoint>
<name>east-data-center</name>
<address>22.33.44.55</address>
</endpoint>
<endpoint>
<name>west-data-center</name>
<address>33.44.55.66</address>
</endpoint>
</endpoints>
<certificates>
<certificate>IDevID Certificate</certificate>
</certificates>
</tls>
</netconf-client>
</call-home>
<tls>
<client-auth>
<trusted-ca-certs>
<trusted-ca-cert>
WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM
lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk
zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot
NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd
VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER
V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF
NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC
Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN
WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW
QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ
MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ
25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2
RJSUJQFRStS0Cg==
</trusted-ca-cert>
</trusted-ca-certs>
<trusted-client-certs>
<trusted-client-cert>
QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ
MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ
25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2
RV0JCU2t2MXI2SFNHeUFUVkpwSmYyOWtXbUU0NEo5akJrQmdOVkhTTUVY
VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER
UxNQWtHQTFVRUJoTUNWVk14RURBT0JnTlZCQW9UQjJWNApZVzF3YkdVeE
V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF
NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC
Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN
WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW
xWVE1SQXdEZ1lEVlFRSwpFd2RsZUdGdGNHeGxNUk13RVFZRFZRUURFd3B
EVWt3Z1NYTnpkV1Z5TUEwR0NTcUdTSWIzRFFFQkJRVUFBNEdCCkFFc3BK
WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM
TQzcjFZSjk0M1FQLzV5eGUKN2QxMkxCV0dxUjUrbEl5N01YL21ka2M4al
zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot
LS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
</trusted-client-cert>
<trusted-client-cert>
VlEVlFRREV3Vm9ZWEJ3ZVRDQm56QU5CZ2txaGtpRzl3MEJBUUVGQUFPQm
pRQXdnWWtDCmdZRUE1RzRFSWZsS1p2bDlXTW44eUhyM2hObUFRaUhVUzV
rRUpPQy9hSFA3eGJXQW1ra054ZStUa2hrZnBsL3UKbVhsTjhSZUd1ODhG
NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd
VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER
V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF
NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC
Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN
WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW
xWVE1SQXdEZ1lEVlFRSwpFd2RsZUdGdGNHeGxNUk13RVFZRFZRUURFd3B
EVWt3Z1NYTnpkV1Z5TUEwR0NTcUdTSWIzRFFFQkJRVUFBNEdCCkFFc3BK
WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM
lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk
zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot
QWtUOCBDRVUUZJ0RUF==
</trusted-client-cert>
</trusted-client-certs>
<cert-maps>
<cert-to-name>
<id>1</id>
<fingerprint>11:0A:05:11:00</fingerprint>
<map-type>x509c2n:san-any</map-type>
</cert-to-name>
<cert-to-name>
<id>2</id>
<fingerprint>B3:4F:A1:8C:54</fingerprint>
<map-type>x509c2n:specified</map-type>
<name>scooby-doo</name>
</cert-to-name>
</cert-maps>
</client-auth>
</tls>
</netconf-server>
3.3. YANG Model
This YANG module imports YANG types from [RFC6991] and [RFC7407].
<CODE BEGINS> file "ietf-netconf-server@2015-07-06.yang"
module ietf-netconf-server {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-server";
prefix "ncserver";
import ietf-netconf-acm {
prefix nacm; // RFC 6536
}
import ietf-inet-types { // RFC 6991
prefix inet;
}
import ietf-x509-cert-to-name { // RFC 7407
prefix x509c2n;
}
organization
"IETF NETCONF (Network Configuration) Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/netconf/>
WG List: <mailto:netconf@ietf.org>
WG Chair: Mehmet Ersue
<mailto:mehmet.ersue@nsn.com>
WG Chair: Mahesh Jethanandani
<mailto:mjethanandani@gmail.com>
Editor: Kent Watsen
<mailto:kwatsen@juniper.net>";
description
"This module contains a collection of YANG definitions for
configuring NETCONF servers.
Copyright (c) 2014 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC VVVV; see
the RFC itself for full legal notices.";
revision "2015-07-06" {
description
"Initial version";
reference
"RFC VVVV: NETCONF Server and RESTCONF Server Configuration
Models";
}
// Features
feature ssh-listen {
description
"The ssh-listen feature indicates that the NETCONF server
supports opening a port to accept NETCONF over SSH
client connections.";
reference
"RFC 6242: Using the NETCONF Protocol over Secure Shell (SSH)";
}
feature ssh-call-home {
description
"The ssh-call-home feature indicates that the NETCONF
server supports initiating a NETCONF over SSH call
home connection to NETCONF clients.";
reference
"RFC YYYY: NETCONF Call Home and RESTCONF Call Home";
}
feature tls-listen {
description
"The tls-listen feature indicates that the NETCONF server
supports opening a port to accept NETCONF over TLS
client connections.";
reference
"RFC 5539: Using the NETCONF Protocol over Transport
Layer Security (TLS) with Mutual X.509
Authentication";
}
feature tls-call-home {
description
"The tls-call-home feature indicates that the NETCONF
server supports initiating a NETCONF over TLS call
home connection to NETCONF clients.";
reference
"RFC YYYY: NETCONF Call Home and RESTCONF Call Home";
}
feature ssh-x509-certs {
description
"The ssh-x509-certs feature indicates that the NETCONF server
supports RFC 6187";
reference
"RFC 6187: X.509v3 Certificates for Secure Shell Authentication";
}
// top-level container (groupings below)
container netconf-server {
description
"Top-level container for NETCONF server configuration.";
container session-options { // SHOULD WE REMOVE THIS ALTOGETHER?
description
"NETCONF session options, independent of transport
or connection strategy.";
leaf hello-timeout {
type uint16;
units "seconds";
default 600;
description
"Specifies the maximum number of seconds that a SSH/TLS
connection may wait for a hello message to be received.
A connection will be dropped if no hello message is
received before this number of seconds elapses. If set
to zero, then the server will wait forever for a hello
message.";
}
}
container listen {
description
"Configures listen behavior";
if-feature "(ssh-listen or tls-listen)";
leaf max-sessions {
type uint16;
default 0;
description
"Specifies the maximum number of concurrent sessions
that can be active at one time. The value 0 indicates
that no artificial session limit should be used.";
}
leaf idle-timeout {
type uint16;
units "seconds";
default 3600; // one hour
description
"Specifies the maximum number of seconds that a NETCONF
session may remain idle. A NETCONF session will be dropped
if it is idle for an interval longer than this number of
seconds. If set to zero, then the server will never drop
a session because it is idle. Sessions that have a
notification subscription active are never dropped.";
}
list endpoint {
key name;
description
"List of endpoints to listen for NETCONF connections on.";
leaf name {
type string;
description
"An arbitrary name for the NETCONF listen endpoint.";
}
choice transport {
mandatory true;
description
"Selects between available transports.";
case ssh {
if-feature ssh-listen;
container ssh {
description
"SSH-specific listening configuration for inbound
connections.";
uses address-and-port-grouping {
refine port {
default 830;
}
}
uses host-keys-grouping;
}
}
case tls {
if-feature tls-listen;
container tls {
description
"TLS-specific listening configuration for inbound
connections.";
uses address-and-port-grouping {
refine port {
default 6513;
}
}
uses certificates-grouping;
}
}
}
}
}
container call-home {
if-feature "(ssh-call-home or tls-call-home)";
description
"Configures call-home behavior";
list netconf-client {
key name;
description
"List of NETCONF clients the NETCONF server is to initiate
call-home connections to.";
leaf name {
type string;
description
"An arbitrary name for the remote NETCONF client.";
}
choice transport {
mandatory true;
description
"Selects between available transports.";
case ssh {
if-feature ssh-call-home;
container ssh {
description
"Specifies SSH-specific call-home transport
configuration.";
uses endpoints-container {
refine endpoints/endpoint/port {
default 7777;
}
}
uses host-keys-grouping;
}
}
case tls {
if-feature tls-call-home;
container tls {
description
"Specifies TLS-specific call-home transport
configuration.";
uses endpoints-container {
refine endpoints/endpoint/port {
default 8888;
}
}
uses certificates-grouping;
}
}
}
container connection-type {
description
"Indicates the kind of connection to use.";
choice connection-type {
description
"Selects between available connection types.";
case persistent-connection {
container persistent {
presence true;
description
"Maintain a persistent connection to the NETCONF
client. If the connection goes down, immediately
start trying to reconnect to it, using the
reconnection strategy.
This connection type minimizes any NETCONF client
to NETCONF server data-transfer delay, albeit at
the expense of holding resources longer.";
leaf idle-timeout {
type uint32;
units "seconds";
default 86400; // one day;
description
"Specifies the maximum number of seconds that a
a NETCONF session may remain idle. A NETCONF
session will be dropped if it is idle for an
interval longer than this number of seconds.
If set to zero, then the server will never drop
a session because it is idle. Sessions that
have a notification subscription active are
never dropped.";
}
container keep-alives {
description
"Configures the keep-alive policy, to proactively
test the aliveness of the SSH/TLS client. An
unresponsive SSH/TLS client will be dropped after
approximately (max-attempts * max-wait) seconds.";
reference
"RFC YYYY: NETCONF Call Home and RESTCONF Call Home,
Section 3.1, item S6";
leaf max-wait {
type uint16 {
range "1..max";
}
units seconds;
default 30;
description
"Sets the amount of time in seconds after which
if no data has been received from the SSH/TLS
client, a SSH/TLS-level message will be sent
to test the aliveness of the SSH/TLS client.";
}
leaf max-attempts {
type uint8;
default 3;
description
"Sets the number of sequential keep-alive messages
that can fail to obtain a response from the SSH/TLS
client before assuming the SSH/TLS client is no
longer alive.";
}
}
}
}
case periodic-connection {
container periodic {
presence true;
description
"Periodically connect to the NETCONF client, so that
the NETCONF client may deliver messages pending for
the NETCONF server. The NETCONF client is expected
to close the connection when it is ready to release
it, thus starting the NETCONF server's timer until
next connection.";
leaf idle-timeout {
type uint16;
units "seconds";
default 300; // five minutes
description
"Specifies the maximum number of seconds that a
a NETCONF session may remain idle. A NETCONF
session will be dropped if it is idle for an
interval longer than this number of seconds.
If set to zero, then the server will never drop
a session because it is idle. Sessions that
have a notification subscription active are
never dropped.";
}
leaf reconnect_timeout {
type uint16 {
range "1..max";
}
units minutes;
default 60;
description
"The maximum amount of unconnected time the NETCONF
server will wait before establishing a connection
to the NETCONF client. The NETCONF server may
initiate a connection before this time if desired
(e.g., to deliver a notification).";
}
}
}
}
}
container reconnect-strategy {
description
"The reconnection strategy guides how a NETCONF server
reconnects to an NETCONF client, after losing a connection
to it, even if due to a reboot. The NETCONF server starts
with the specified endpoint and tries to connect to it
max-attempts times before trying the next endpoint in the
list (round robin).";
leaf start-with {
type enumeration {
enum first-listed {
description
"Indicates that reconnections should start with
the first endpoint listed.";
}
enum last-connected {
description
"Indicates that reconnections should start with
the endpoint last connected to. If no previous
connection has ever been established, then the
first endpoint configured is used. NETCONF
servers SHOULD be able to remember the last
endpoint connected to across reboots.";
}
}
default first-listed;
description
"Specifies which of the NETCONF client's endpoints the
NETCONF server should start with when trying to connect
to the NETCONF client.";
}
leaf max-attempts {
type uint8 {
range "1..max";
}
default 3;
description
"Specifies the number times the NETCONF server tries to
connect to a specific endpoint before moving on to the
next endpoint in the list (round robin).";
}
}
}
}
container ssh {
description
"Configures SSH properties not specific to the listen
or call-home use-cases";
if-feature "(ssh-listen or ssh-call-home)";
container x509 {
if-feature ssh-x509-certs;
uses trusted-certs-grouping;
}
}
container tls {
description
"Configures TLS properties for authenticating clients.";
if-feature "(tls-listen or tls-call-home)";
container client-auth {
description
"Container for TLS client authentication configuration.";
uses trusted-certs-grouping;
container cert-maps {
uses x509c2n:cert-to-name;
description
"The cert-maps container is used by a NETCONF server to
map the NETCONF client's presented X.509 certificate to a
NETCONF username. If no matching and valid cert-to-name
list entry can be found, then the NETCONF server MUST
close the connection, and MUST NOT accept NETCONF
messages over it.";
reference
"RFC WWWW: NETCONF over TLS, Section 7";
}
}
}
}
grouping trusted-certs-grouping {
description
"This grouping is used by both the ssh and tls containers.";
container trusted-ca-certs {
description
"A list of Certificate Authority (CA) certificates that
a NETCONF server can use to authenticate NETCONF client
certificates.";
reference
"RFC WWWW: NETCONF over TLS, Sections 5 and 7.
RFC 4253: The Secure Shell (SSH) Transport Layer Protocol,
Section 8, #3.
RFC 6187: X.509v3 Certificates for Secure Shell
Authentication.";
leaf-list trusted-ca-cert {
type binary;
nacm:default-deny-write;
description
"The binary certificate structure as specified by RFC
5246, Section 7.4.6, i.e.,: opaque ASN.1Cert<1..2^24>;
";
reference
"RFC 5246: The Transport Layer Security (TLS)
Protocol Version 1.2";
}
}
container trusted-client-certs {
description
"A list of client certificates that a NETCONF server can
use to authenticate a NETCONF client's certificate. A
client's certificate is authenticated if it is an exact
match to a configured trusted client certificate.";
leaf-list trusted-client-cert {
type binary;
nacm:default-deny-write;
description
"The binary certificate structure, as
specified by RFC 5246, Section 7.4.6, i.e.,:
opaque ASN.1Cert<1..2^24>;
";
reference
"RFC 5246: The Transport Layer Security (TLS)
Protocol Version 1.2";
}
}
}
grouping host-keys-grouping {
description
"This grouping is used by both the listen and
call-home containers";
container host-keys {
description
"Parent container for the list of host-keys.";
leaf-list host-key {
type string;
min-elements 1;
ordered-by user;
description
"A user-ordered list of host-keys the SSH server
considers when composing the list of server host
key algorithms it will send to the client in its
SSH_MSG_KEXINIT message. The value of the string
is the unique identifier for a host-key configured
on the system. How valid values are discovered is
outside the scope of this module, but they are
envisioned to be the keys for a list of host-keys
provided by another YANG module";
reference
"RFC 4253: The SSH Transport Layer Protocol, Section 7";
}
}
}
grouping certificates-grouping {
description
"This grouping is used by both the listen and
call-home containers";
container certificates {
description
"Parent container for the list of certificates.";
leaf-list certificate {
type string;
min-elements 1;
description
"An unordered list of certificates the TLS server can pick
from when sending its Server Certificate message. The value
of the string is the unique identifier for a certificate
configured on the system. How valid values are discovered
is outside the scope of this module, but they are envisioned
to be the keys for a list of certificates provided
by another YANG module";
reference
"RFC 5246: The TLS Protocol, Section 7.4.2";
}
}
}
grouping address-and-port-grouping {
description
"This grouping is used by both the ssh and tls containers
for listen configuration.";
leaf address {
type inet:ip-address;
description
"The IP address of the interface to listen on. The NETCONF
server will listen on all interfaces if no value is
specified.";
}
leaf port {
type inet:port-number;
description
"The local port number on this interface the NETCONF server
listens on. The NETCONF server will use the IANA-assigned
well-known port if no value is specified.";
}
}
grouping endpoints-container {
description
"This grouping is used by both the ssh and tls containers
for call-home configurations.";
container endpoints {
description
"Container for the list of endpoints.";
list endpoint {
key name;
min-elements 1;
ordered-by user;
description
"User-ordered list of endpoints for this NETCONF client.
Defining more than one enables high-availability.";
leaf name {
type string;
description
"An arbitrary name for this endpoint.";
}
leaf address {
type inet:host;
mandatory true;
description
"The IP address or hostname of the endpoint. If a
hostname is configured and the DNS resolution results
in more than one IP address, the NETCONF server
will process the IP addresses as if they had been
explicitly configured in place of the hostname.";
}
leaf port {
type inet:port-number;
description
"The IP port for this endpoint. The NETCONF server will
use the IANA-assigned well-known port if no value is
specified.";
}
}
}
}
}
<CODE ENDS>
4. The RESTCONF Server Model
4.1. Tree Diagram
module: ietf-restconf-server
+--rw restconf-server
+--rw listen {tls-listen}?
| +--rw max-sessions? uint16
| +--rw endpoint* [name]
| +--rw name string
| +--rw (transport)
| +--:(tls)
| +--rw tls
| +--rw address? inet:ip-address
| +--rw port? inet:port-number
| +--rw certificates
| +--rw certificate* string
+--rw call-home {tls-call-home}?
| +--rw restconf-client* [name]
| +--rw name string
| +--rw (transport)
| | +--:(tls)
| | +--rw tls
| | +--rw endpoints
| | | +--rw endpoint* [name]
| | | +--rw name string
| | | +--rw address inet:host
| | | +--rw port? inet:port-number
| | +--rw certificates
| | +--rw certificate* string
| +--rw connection-type
| | +--rw (connection-type)?
| | +--:(persistent-connection)
| | | +--rw persistent!
| | | +--rw keep-alives
| | | +--rw max-wait? uint16
| | | +--rw max-attempts? uint8
| | +--:(periodic-connection)
| | +--rw periodic!
| | +--rw reconnect-timeout? uint16
| +--rw reconnect-strategy
| +--rw start-with? enumeration
| +--rw max-attempts? uint8
+--rw client-cert-auth {client-cert-auth}?
+--rw trusted-ca-certs
| +--rw trusted-ca-cert* binary
+--rw trusted-client-certs
| +--rw trusted-client-cert* binary
+--rw cert-maps
+--rw cert-to-name* [id]
+--rw id uint32
+--rw fingerprint x509c2n:tls-fingerprint
+--rw map-type identityref
+--rw name string
4.2. Example Usage
4.2.1. Configuring TLS Transport
The following example illustrates the <get> response from a RESTCONF
server that only supports TLS, both listening for incoming
connections as well as calling home to a single RESTCONF client
having two endpoints.
<restconf-server xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf-server">
<listen>
<endpoint>
<name>primary-restconf-endpoint</name>
<tls>
<address>11.22.33.44</address>
<certificates>
<certificate>fw1.east.example.com</certificate>
</certificates>
</tls>
</endpoint>
</listen>
<call-home>
<restconf-client>
<name>config-mgr</name>
<tls>
<endpoints>
<endpoint>
<name>east-data-center</name>
<address>11.22.33.44</address>
</endpoint>
<endpoint>
<name>west-data-center</name>
<address>55.66.77.88</address>
</endpoint>
</endpoints>
<certificates>
<certificate>fw1.east.example.com</certificate>
</certificates>
</tls>
</restconf-client>
</call-home>
</restconf-server>
4.3. YANG Model
This YANG module imports YANG types from [RFC6991] and [RFC7407].
<CODE BEGINS> file "ietf-restconf-server@2015-07-06.yang"
module ietf-restconf-server {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-restconf-server";
prefix "rcserver";
import ietf-netconf-acm {
prefix nacm; // RFC 6536
}
import ietf-inet-types { // RFC 6991
prefix inet;
}
import ietf-x509-cert-to-name { // RFC 7407
prefix x509c2n;
}
organization
"IETF NETCONF (Network Configuration) Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/netconf/>
WG List: <mailto:netconf@ietf.org>
WG Chair: Mehmet Ersue
<mailto:mehmet.ersue@nsn.com>
WG Chair: Mahesh Jethanandani
<mailto:mjethanandani@gmail.com>
Editor: Kent Watsen
<mailto:kwatsen@juniper.net>";
description
"This module contains a collection of YANG definitions for
configuring RESTCONF servers.
Copyright (c) 2014 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC VVVV; see
the RFC itself for full legal notices.";
revision "2015-07-06" {
description
"Initial version";
reference
"RFC VVVV: NETCONF Server and RESTCONF Server Configuration
Models";
}
// Features
feature tls-listen {
description
"The listen feature indicates that the RESTCONF server
supports opening a port to listen for incoming RESTCONF
client connections.";
reference
"RFC XXXX: RESTCONF Protocol";
}
feature tls-call-home {
description
"The call-home feature indicates that the RESTCONF server
supports initiating connections to RESTCONF clients.";
reference
"RFC YYYY: NETCONF Call Home and RESTCONF Call Home";
}
feature client-cert-auth {
description
"The client-cert-auth feature indicates that the RESTCONF
server supports the ClientCertificate authentication scheme.";
reference
"RFC ZZZZ: Client Authentication over New TLS Connection";
}
// top-level container (groupings below)
container restconf-server {
description
"Top-level container for RESTCONF server configuration.";
container listen {
description
"Configures listen behavior";
if-feature tls-listen;
leaf max-sessions {
type uint16;
default 0; // should this be 'max'?
description
"Specifies the maximum number of concurrent sessions
that can be active at one time. The value 0 indicates
that no artificial session limit should be used.";
}
list endpoint {
key name;
description
"List of endpoints to listen for RESTCONF connections on.";
leaf name {
type string;
description
"An arbitrary name for the RESTCONF listen endpoint.";
}
choice transport {
mandatory true;
description
"Selects between available transports.";
case tls {
container tls {
description
"TLS-specific listening configuration for inbound
connections.";
leaf address {
type inet:ip-address;
description
"The IP address of the interface to listen on. The
RESTCONF server will listen on all interfaces if
no value is specified.";
}
leaf port {
type inet:port-number;
default 443;
description
"The port number the RESTCONF server will listen on.";
}
uses certificates-grouping;
}
}
}
}
}
container call-home {
if-feature tls-call-home;
description
"Configures call-home behavior";
list restconf-client {
key name;
description
"List of RESTCONF clients the RESTCONF server is to
initiate call-home connections to.";
leaf name {
type string;
description
"An arbitrary name for the remote RESTCONF client.";
}
choice transport {
mandatory true;
description
"Selects between TLS and any transports augmented in.";
case tls {
container tls {
description
"Specifies TLS-specific call-home transport
configuration.";
container endpoints {
description
"Container for the list of endpoints.";
list endpoint {
key name;
min-elements 1;
ordered-by user;
description
"User-ordered list of endpoints for this RESTCONF
client. More than one enables high-availability.";
leaf name {
type string;
description
"An arbitrary name for this endpoint.";
}
leaf address {
type inet:host;
mandatory true;
description
"The IP address or hostname of the endpoint. If
a hostname is configured and the DNS resolution
results in more than one IP address, the RESTCONF
server will process the IP addresses as if they
had been explicitly configured in place of the
hostname.";
}
leaf port {
type inet:port-number;
default 9999;
description
"The IP port for this endpoint. The RESTCONF
server will use the IANA-assigned well-known
port if no value is specified.";
}
}
}
uses certificates-grouping;
}
}
}
container connection-type {
description
"Indicates the RESTCONF client's preference for how the
RESTCONF server's connection is maintained.";
choice connection-type {
description
"Selects between available connection types.";
case persistent-connection {
container persistent {
presence true;
description
"Maintain a persistent connection to the RESTCONF
client. If the connection goes down, immediately
start trying to reconnect to it, using the
reconnection strategy.
This connection type minimizes any RESTCONF client
to RESTCONF server data-transfer delay, albeit at
the expense of holding resources longer.";
container keep-alives {
description
"Configures the keep-alive policy, to proactively
test the aliveness of the TLS client. An
unresponsive TLS client will be dropped after
approximately (max-attempts * max-wait) seconds.";
reference
"RFC YYYY: NETCONF Call Home and RESTCONF Call Home,
Section 3.1, item S6";
leaf max-wait {
type uint16 {
range "1..max";
}
units seconds;
default 30;
description
"Sets the amount of time in seconds after which
if no data has been received from the TLS
client, a TLS-level message will be sent to
test the aliveness of the TLS client.";
}
leaf max-attempts {
type uint8;
default 3;
description
"Sets the number of sequential keep-alive messages
that can fail to obtain a response from the TLS
client before assuming the TLS client is no
longer alive.";
}
}
}
}
case periodic-connection {
container periodic {
presence true;
description
"Periodically connect to the RESTCONF client, so that
the RESTCONF client may deliver messages pending for
the RESTCONF server. The RESTCONF client is expected
to close the connection when it is ready to release
it, thus starting the RESTCONF server's timer until
next connection.";
leaf reconnect-timeout {
type uint16 {
range "1..max";
}
units minutes;
default 60;
description
"The maximum amount of unconnected time the RESTCONF
server will wait before re-establishing a connection
to the RESTCONF client. The RESTCONF server may
initiate a connection before this time if desired
(e.g., to deliver a notification).";
}
}
}
}
}
container reconnect-strategy {
description
"The reconnection strategy guides how a RESTCONF server
reconnects to an RESTCONF client, after losing a connection
to it, even if due to a reboot. The RESTCONF server starts
with the specified endpoint and tries to connect to it
max-attempts times before trying the next endpoint in the
list (round robin).";
leaf start-with {
type enumeration {
enum first-listed {
description
"Indicates that reconnections should start with
the first endpoint listed.";
}
enum last-connected {
description
"Indicates that reconnections should start with
the endpoint last connected to. If no previous
connection has ever been established, then the
first endpoint configured is used. RESTCONF
servers SHOULD be able to remember the last
endpoint connected to across reboots.";
}
}
default first-listed;
description
"Specifies which of the RESTCONF client's endpoints the
RESTCONF server should start with when trying to connect
to the RESTCONF client.";
}
leaf max-attempts {
type uint8 {
range "1..max";
}
default 3;
description
"Specifies the number times the RESTCONF server tries to
connect to a specific endpoint before moving on to the
next endpoint in the list (round robin).";
}
}
}
}
container client-cert-auth {
if-feature client-cert-auth;
description
"Container for TLS client certificate authentication
configuration.";
container trusted-ca-certs {
description
"A list of Certificate Authority (CA) certificates that
a RESTCONF server can use to authenticate RESTCONF client
certificates.";
reference
"RFC XXXX: RESTCONF Protocol, Sections 2.3 and 2.5.";
leaf-list trusted-ca-cert {
type binary;
nacm:default-deny-write;
description
"The binary certificate structure as specified by RFC
5246, Section 7.4.6, i.e.,: opaque ASN.1Cert<1..2^24>;
";
reference
"RFC 5246: The Transport Layer Security (TLS)
Protocol Version 1.2";
}
}
container trusted-client-certs {
description
"A list of client certificates that a RESTCONF server can
use to authenticate a RESTCONF client's certificate. A
client's certificate is authenticated if it is an exact
match to a configured trusted client certificate.";
leaf-list trusted-client-cert {
type binary;
nacm:default-deny-write;
description
"The binary certificate structure, as specified by RFC
5246, Section 7.4.6, i.e.,: opaque ASN.1Cert<1..2^24>;
";
reference
"RFC 5246: The Transport Layer Security (TLS)
Protocol Version 1.2";
}
}
container cert-maps {
uses x509c2n:cert-to-name;
description
"The cert-maps container is used by a RESTCONF server to
map the RESTCONF client's presented X.509 certificate to a
RESTCONF username. If no matching and valid cert-to-name
list entry can be found, then the RESTCONF server MUST
close the connection, and MUST NOT accept RESTCONF
messages over it.";
reference
"RFC XXXX: RESTCONF Protocol, Section 2.5";
}
}
}
grouping certificates-grouping {
description
"This grouping is used by both the listen and
call-home containers";
container certificates {
description
"Parent container for the list of certificates.";
leaf-list certificate {
type string;
min-elements 1;
description
"An unordered list of certificates the TLS server can pick
from when sending its Server Certificate message. The value
of the string is the unique identifier for a certificate
configured on the system. How valid values are discovered
is outside the scope of this module, but they are envisioned
to be the keys for a list of certificates provided
by another YANG module";
reference
"RFC 5246: The TLS Protocol, Section 7.4.2";
}
}
}
}
<CODE ENDS>
5. Security Considerations
There are a number of data nodes defined in the "ietf-netconf-server"
YANG module which are readable and/or writable that may be considered
sensitive or vulnerable in some network environments. Write and read
operations to these data nodes can have a negative effect on network
operations. It is thus important to control write and read access to
these data nodes. Below are the data nodes and their sensitivity/
vulnerability.
netconf-server/tls/client-auth/trusted-ca-certs:
o This container contains certificates that a NETCONF server is to
use as trust anchors for authenticating X.509-based client
certificates. Write access to this node is protected using an
nacm:default-deny-write statement.
netconf-server/tls/client-auth/trusted-client-certs:
o This container contains certificates that a NETCONF server is to
trust directly when authenticating X.509-based client
certificates. Write access to this node is protected using an
nacm:default-deny-write statement.
restconf-server/tls/client-auth/trusted-ca-certs:
o This container contains certificates that a RESTCONF server is to
use as trust anchors for authenticating X.509-based client
certificates. Write access to this node is protected using an
nacm:default-deny-write statement.
restconf-server/tls/client-auth/trusted-client-certs:
o This container contains certificates that a RESTCONF server is to
trust directly when authenticating X.509-based client
certificates. Write access to this node is protected using an
nacm:default-deny-write statement.
6. IANA Considerations
This document registers two URIs in the IETF XML registry [RFC2119].
Following the format in [RFC3688], the following registrations are
requested:
URI: urn:ietf:params:xml:ns:yang:ietf-netconf-server
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.
URI: urn:ietf:params:xml:ns:yang:ietf-restconf-server
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.
This document registers two YANG modules in the YANG Module Names
registry [RFC6020]. Following the format in [RFC6020], the the
following registrations are requested:
name: ietf-netconf-server
namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-server
prefix: ncserver
reference: RFC VVVV
name: ietf-restconf-server
namespace: urn:ietf:params:xml:ns:yang:ietf-restconf-server
prefix: rcserver
reference: RFC VVVV
7. Other Considerations
The YANG modules define herein do not themselves support virtual
routing and forwarding (VRF). It is expected that external modules
will augment in VRF designations when needed.
8. Acknowledgements The solution presented in this document defines a configurable
keychain object, reusable groupings for SSH and TLS based servers,
and, finally, the configurable NETCONF and RESTCONF server objects,
which are the primary purpose for this draft. Each of these are
defined in a distinct YANG module, thus a total of five YANG modules
are defined in this document. The relationship between these five
YANG modules is illustrated by the tree diagram below.
The authors would like to thank for following for lively discussions +-------------+
on list and in the halls (ordered by last name): Andy Bierman, Martin |ietf-keychain|
Bjorklund, Benoit Claise, Mehmet Ersue, David Lamparter, Alan Luchuk, +-------------+
Ladislav Lhotka, Radek Krejci, Tom Petch, Phil Shafer, and Bert ^ ^
Wijnen. | |
<leafref> | | <leafref>
+------------+ +------------+
| |
+---------------+ +------------------+
|ietf-ssh-server| | ietf-tls-server |
+---------------+ +------------------+
^ ^ ^
| <uses> | |
| <augments> | |
| +--------------------+ | <augments>
| | |
+-------------------+ +--------------------+
|ietf-netconf-server| |ietf-restconf-server|
+-------------------+ +--------------------+
Juergen Schoenwaelder and was partly funded by Flamingo, a Network of 4. Solution
Excellence project (ICT-318488) supported by the European Commission
under its Seventh Framework Programme.
9. References Each of the following five sections relate to one of the YANG modules
depicted by the figure above.
9.1. Normative References 4.1. The Keychain Model
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate The keychain model depicted in this section provides a configurable
Requirement Levels", BCP 14, RFC 2119, March 1997. object having the following characteristics:
[RFC4253] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH) o A semi-configurable list of private keys, each with one or more
Transport Layer Protocol", RFC 4253, January 2006. associated certificates. Though private keys can only be created
via an RPC (see bullet #3 below), the entries of the list may be
renamed and have certificates associated with them after creation.
[RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the o A configurable list of lists of trust anchor certificates. This
Network Configuration Protocol (NETCONF)", RFC 6020, enables the server to have use-specific trust anchors. For
October 2010. instance, one list of trust anchors might be used to authenticate
management connections (e.g., client certificate-based
authentication for NETCONF or RESTCONF connections), and a
different list of trust anchors might be used for when connecting
to a specific Internet-based service (e.g., a zero touch bootstrap
server).
[RFC6187] Igoe, K. and D. Stebila, "X.509v3 Certificates for Secure o An RPC to request the server to generate a new private key using
Shell Authentication", RFC 6187, March 2011. the specified algorithm and key length.
[RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A. o An RPC to generate a certificate signing request for an existing
Bierman, "Network Configuration Protocol (NETCONF)", RFC private key, a passed subject, and an optional attributes. The
6241, June 2011. signed certificate returned from an external certificate authority
(CA) can be set using a standard configuration change request
(e.g., <edit-config>).
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure 4.1.1. Tree Diagram
Shell (SSH)", RFC 6242, June 2011.
[RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration module: ietf-keychain
Protocol (NETCONF) Access Control Model", RFC 6536, March +--rw keychain
2012. +--rw private-keys
| +--rw private-key* [name]
| | +--rw name string
| | +--ro algorithm? enumeration
| | +--ro key-length? uint32
| | +--ro public-key? string
| | +--rw certificates
| | | +--rw certificate* [name]
| | | +--rw name string
| | | +--rw chain? binary
| | +---x generate-certificate-signing-request
| | +---w input
| | | +---w subject binary
| | | +---w attributes? binary
| | +--ro output
| | +--ro certificate-signing-request binary
| +---x generate-private-key
| +---w input
| +---w name string
| +---w algorithm enumeration
| +---w key-length? uint32
+--rw trusted-certificates* [name]
+--rw name string
+--rw description? string
+--rw trusted-certificate* [name]
+--rw name string
+--rw certificate? binary
[RFC6991] Schoenwaelder, J., "Common YANG Data Types", RFC 6991, 4.1.2. Example Usage
July 2013.
[RFC7407] Bjorklund, M. and J. Schoenwaelder, "A YANG Data Model for The following example illustrates the "generate-private-key" RPC in
SNMP Configuration", RFC 7407, December 2014. use with the RESTCONF protocol and JSON encoding.
[RFC7589] Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the REQUEST
NETCONF Protocol over Transport Layer Security (TLS) with -------
Mutual X.509 Authentication", RFC 7589, June 2015.
[draft-ietf-netconf-call-home] ['\' line wrapping added for formatting only]
Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
draft-ieft-netconf-call-home-02 (work in progress), 2014.
[draft-ietf-netconf-restconf] POST https://example.com/restconf/data/ietf-keychain:keychain/\
Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF private-keys/generate-private-key HTTP/1.1
Protocol", draft-ieft-netconf-restconf-04 (work in HOST: example.com
progress), 2014. Content-Type: application/yang.operation+json
9.2. Informative References {
"ietf-keychain:input" : {
"name" : "ex-key-sect571r1",
"algorithm" : "sect571r1"
}
}
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, RESPONSE
January 2004. --------
Appendix A. Alternative solution addressing Issue #49 HTTP/1.1 204 No Content
Date: Mon, 31 Oct 2015 11:01:00 GMT
Server: example-server
Option #4 for Issue #49 proposed to define configuration for a The following example illustrates the action statement "generate-
keychain and on-going discussion proposed to create reusable certificate-signing-request" action in use with the NETCONF protocol.
groupings for SSH/TLS servers (referencing keys and certificates held
in the keychain) that the NETCONF/RESTCONF servers would uses. This
relationship is illustrated by the diagram below.
+-------------+ REQUEST
|ietf-keychain| -------
+-------------+
^ ^
| |
<leafref> | | <leafref>
+------------+ +------------+
| |
+---------------+ +------------------+
|ietf-ssh-server| | ietf-tls-server |
+---------------+ +------------------+
^ ^ ^
| <uses> | |
| <augments> | |
| +--------------------+ | <augments>
| | |
+-------------------+ +--------------------+
|ietf-netconf-server| |ietf-restconf-server|
+-------------------+ +--------------------+
The following sections each of the five YANG modules above. <rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<action xmlns="urn:ietf:params:xml:ns:yang:1">
<keychain xmlns="urn:ietf:params:xml:ns:yang:ietf-keychain">
<private-keys>
<private-key>
<name>ex-key-sect571r1</name>
<generate-certificate-signing-request>
<subject>
cztvaWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvO2R
manZvO3NkZmJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNlmO
Z2aXNiZGZpYmhzZG87ZmJvO3NkZ25iO29pLmR6Zgo=
</subject>
<attributes>
bwtakWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvut4
arnZvO3NkZmJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNkYm
Z2aXNiZGZpYmhzZG87ZmJvO3NkZ25iO29pLmC6Rhp=
</attributes>
</generate-certificate-signing-request>
</private-key>
</private-keys>
</keychain>
</action>
</rpc>
A.1. The Keychain Model RESPONSE
--------
A.1.1. Tree Diagram <rpc-reply message-id="101"
module: ietf-keychain xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
+--rw keychain <certificate-signing-request
+--rw private-keys xmlns="urn:ietf:params:xml:ns:yang:ietf-keychain">
| +--rw private-key* [name] LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
| +--rw name string 0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
| +--ro algorithm? enumeration FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
| +--ro key-length? uint32 GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
| +--ro public-key? string diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
| +--rw certificates KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
| +--rw certificate* [name] El1QWMrQ1RsTkNmc0d6cEw1Um5ydXZsOFRIcUJTdGZQY3N0Zk1KT1
| +--rw name string FaNzlnNlNWVldsMldzaHE1bUViCkJNNitGNzdjbTAvU25FcFE0TnV
| +--rw chain? binary bXBDT2YKQWdNQkFBR2pnYXd3Z2Frd0hRWURWUjBPQkJZRUZKY1o2W
+--rw trusted-certificates* [name] URiR0lPNDB4ajlPb3JtREdsRUNCVTFNR1FHQTFVZApJd1JkTUZ1QU
+--rw name string ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d
+--rw trusted-certificate* [name] mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0
+--rw name string RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
+--rw certificate? binary rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
rpcs: TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d
+---x generate-certificate-signing-request c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV
| +---w input SWHgzZjdVM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
| | +---w private-key? -> /keychain/private-keys/private-key/name </certificate-signing-request>
| | +---w subject binary </rpc-reply>
| | +---w attributes? binary
| +--ro output
| +--ro certificate-signing-request binary
+---x generate-private-key
+---w input
+---w name string
+---w algorithm enumeration
+---w key-length uint32
A.1.2. Example Usage The following example illustrates what a fully configured keychain
object might look like. The private-key shown below is consistent
with the generate-private-key and generate-certificate-signing-
request examples above. This example also assumes that the resulting
CA-signed certificate has been configured back onto the server.
Lastly, this example shows that three lists of trusted certificates
having been configured.
<keychain xmlns="urn:ietf:params:xml:ns:yang:ietf-keychain"> <keychain xmlns="urn:ietf:params:xml:ns:yang:ietf-keychain">
<!-- private keys and associated certificates --> <!-- private keys and associated certificates -->
<private-keys> <private-keys>
<private-key> <private-key>
<name>TPM key</name> <name>ex-key-sect571r1</name>
<algorithm>rsa</algorithm> <algorithm>sect571r1</algorithm>
<key-length>2048</key-length>
<public-key> <public-key>
cztvaWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvO2RmanZvO3NkZ cztvaWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvO2RmanZvO3NkZ
mJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNkYmZ2aXNiZGZpYmhzZG87Zm mJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNkYmZ2aXNiZGZpYmhzZG87Zm
JvO3NkZ25iO29pLmR6Zgo= JvO3NkZ25iO29pLmR6Zgo=
</public-key> </public-key>
<certificates> <certificates>
<certificate> <certificate>
<name>IDevID Certificate</name> <name>ex-key-sect571r1-cert</name>
<chain> <data>
LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU 0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3 KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
El1QWMrQ1RsTkNmc0d6cEw1Um5ydXZsOFRIcUJTdGZQY3N0Zk1KT1 El1QWMrQ1RsTkNmc0d6cEw1Um5ydXZsOFRIcUJTdGZQY3N0Zk1KT1
FaNzlnNlNWVldsMldzaHE1bUViCkJNNitGNzdjbTAvU25FcFE0TnV FaNzlnNlNWVldsMldzaHE1bUViCkJNNitGNzdjbTAvU25FcFE0TnV
bXBDT2YKQWdNQkFBR2pnYXd3Z2Frd0hRWURWUjBPQkJZRUZKY1o2W bXBDT2YKQWdNQkFBR2pnYXd3Z2Frd0hRWURWUjBPQkJZRUZKY1o2W
URiR0lPNDB4ajlPb3JtREdsRUNCVTFNR1FHQTFVZApJd1JkTUZ1QU URiR0lPNDB4ajlPb3JtREdsRUNCVTFNR1FHQTFVZApJd1JkTUZ1QU
ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d
mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0 mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0
RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d
c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV
SWHgzZjdVM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg== SWHgzZjdVM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
</chain> </data>
</certificate> </certificate>
</certificates> </certificates>
</private-key> </private-key>
</private-keys> </private-keys>
<!-- trusted netconf/restconf client certificates --> <!-- trusted netconf/restconf client certificates -->
<trusted-certificates> <trusted-certificates>
<name>Trusted certificates for netconf/restconf client</name> <name>explicitly-trusted-client-certs</name>
<description>
Specific client authentication certificates that are to be
explicitly trusted NETCONF/RESTCONF clients. These are
needed for client certificates not signed by our CA.
</description>
<trusted-certificate> <trusted-certificate>
<name>George Jetson</name> <name>George Jetson</name>
<certificate> <certificate>
QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ
MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ
25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2 25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2
RV0JCU2t2MXI2SFNHeUFUVkpwSmYyOWtXbUU0NEo5akJrQmdOVkhTTUVY RV0JCU2t2MXI2SFNHeUFUVkpwSmYyOWtXbUU0NEo5akJrQmdOVkhTTUVY
VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER
UxNQWtHQTFVRUJoTUNWVk14RURBT0JnTlZCQW9UQjJWNApZVzF3YkdVeE UxNQWtHQTFVRUJoTUNWVk14RURBT0JnTlZCQW9UQjJWNApZVzF3YkdVeE
V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF
skipping to change at page 44, line 30 skipping to change at page 13, line 46
WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM
lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk
zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot
QWtUOCBDRVUUZJ0RUF== QWtUOCBDRVUUZJ0RUF==
</certificate> </certificate>
</trusted-certificate> </trusted-certificate>
</trusted-certificates> </trusted-certificates>
<!-- trust anchors for netconf/restconf clients --> <!-- trust anchors for netconf/restconf clients -->
<trusted-certificates> <trusted-certificates>
<name>Trust anchors for netconf/restconf clients</name> <name>deployment-specific-ca-certs</name>
<description>
Trust anchors used only to authenticate NETCONF/RESTCONF
client connections. Since our security policy only allows
authentication for clients having a certificate signed by
our CA, we only configure its certificate below.
</description>
<trusted-certificate> <trusted-certificate>
<name>Example.com</name> <name>ca.example.com</name>
<certificate> <certificate>
WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM
lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk
zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot
NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd
VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER
V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF
NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC
Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN
WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW
QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ
MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ
25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2 25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2
RJSUJQFRStS0Cg== RJSUJQFRStS0Cg==
</certificate> </certificate>
</trusted-certificate> </trusted-certificate>
</trusted-certificates> </trusted-certificates>
<!-- trust anchors for random HTTPS servers on Internet --> <!-- trust anchors for random HTTPS servers on Internet -->
<trusted-certificates> <trusted-certificates>
<name>Trust anchors for random HTTPS servers</name> <name>common-ca-certs</name>
<description>
Trusted certificates to authenticate common HTTPS servers.
These certificates are similar to those that might be
shipped with a web browser.
</description>
<trusted-certificate> <trusted-certificate>
<name>Example.com</name> <name>ex-certificate-authority</name>
<certificate> <certificate>
NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd
VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER
V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF
Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN
QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ
MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ
NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC
WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM
lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk
zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot
25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2 25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2
WpiMjB2WlhoaGJYQnNaUzVqY215aU9L= WpiMjB2WlhoaGJYQnNaUzVqY215aU9L=
</certificate> </certificate>
</trusted-certificate> </trusted-certificate>
</trusted-certificates> </trusted-certificates>
</keychain> </keychain>
A.1.3. YANG Model 4.1.3. YANG Model
<CODE BEGINS> file "ietf-keychain@2015-07-06.yang"
module ietf-keychain { <CODE BEGINS> file "ietf-keychain@2015-10-09.yang"
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-keychain"; module ietf-keychain {
prefix "kc"; yang-version 1.1;
organization namespace "urn:ietf:params:xml:ns:yang:ietf-keychain";
"IETF NETCONF (Network Configuration) Working Group"; prefix "kc";
contact organization
"WG Web: <http://tools.ietf.org/wg/netconf/> "IETF NETCONF (Network Configuration) Working Group";
WG List: <mailto:netconf@ietf.org>
WG Chair: Mehmet Ersue contact
<mailto:mehmet.ersue@nsn.com> "WG Web: <http://tools.ietf.org/wg/netconf/>
WG List: <mailto:netconf@ietf.org>
WG Chair: Mahesh Jethanandani WG Chair: Mehmet Ersue
<mailto:mjethanandani@gmail.com> <mailto:mehmet.ersue@nsn.com>
Editor: Kent Watsen WG Chair: Mahesh Jethanandani
<mailto:kwatsen@juniper.net>"; <mailto:mjethanandani@gmail.com>
description Editor: Kent Watsen
"This module defines a keychain to centralize management of <mailto:kwatsen@juniper.net>";
security credentials.
Copyright (c) 2014 IETF Trust and the persons identified as description
authors of the code. All rights reserved. "This module defines a keychain to centralize management of
security credentials.
Redistribution and use in source and binary forms, with or Copyright (c) 2014 IETF Trust and the persons identified as
without modification, is permitted pursuant to, and subject authors of the code. All rights reserved.
to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC VVVV; see Redistribution and use in source and binary forms, with or
the RFC itself for full legal notices."; without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info).
revision "2015-07-06" { This version of this YANG module is part of RFC VVVV; see
description the RFC itself for full legal notices.";
"Initial version";
reference
"RFC VVVV: NETCONF Server and RESTCONF Server Configuration
Models";
}
container keychain { revision "2015-10-09" {
description description
"A list of private-keys and their associated certificates, as "Initial version";
well as lists of trusted certificates for client certificate reference
authentication. RPCs are provided to generate a new private "RFC VVVV: NETCONF Server and RESTCONF Server Configuration
key and to generate a certificate signing requests."; Models";
}
container private-keys { container keychain {
description description
"A list of private key maintained by the keychain."; "A list of private-keys and their associated certificates, as
list private-key { well as lists of trusted certificates for client certificate
key name; authentication. RPCs are provided to generate a new private
description key and to generate a certificate signing requests.";
"A private key.";
leaf name {
type string;
description
"An arbitrary name for the private key.";
}
leaf algorithm {
type enumeration {
enum rsa { description "TBD"; }
enum dsa { description "TBD"; }
enum secp192r1 { description "TBD"; }
enum sect163k1 { description "TBD"; }
enum sect163r2 { description "TBD"; }
enum secp224r1 { description "TBD"; }
enum sect233k1 { description "TBD"; }
enum sect233r1 { description "TBD"; }
enum secp256r1 { description "TBD"; }
enum sect283k1 { description "TBD"; }
enum sect283r1 { description "TBD"; }
enum secp384r1 { description "TBD"; }
enum sect409k1 { description "TBD"; }
enum sect409r1 { description "TBD"; }
enum secp521r1 { description "TBD"; }
enum sect571k1 { description "TBD"; }
enum sect571r1 { description "TBD"; }
}
config false;
description
"The algorithm used by the private key.";
}
leaf key-length {
type uint32;
config false;
description
"The key-length used by the private key.";
}
leaf public-key {
type string;
config false;
description
"The public-key matching the private key.";
}
container certificates {
list certificate {
key name;
description
"A certificate for this public key.";
leaf name {
type string;
description
"An arbitrary name for the certificate.";
}
leaf chain {
type binary;
description
"The certificate itself, as well as an ordered
sequence of intermediate certificates leading
to a trust anchor, as specified by RFC 5246,
Section 7.4.2.";
reference
"RFC 5246: The Transport Layer Security (TLS)
Protocol Version 1.2";
}
}
description
"A list of certificates for this public key.";
}
action generate-certificate-signing-request {
description
"Generates a certificate signing request structure for
the associated private key using the passed subject
and attribute values.";
input {
leaf subject {
type binary;
mandatory true;
description
"The 'subject' field in the CertificationRequestInfo
defined in RFC 2986, Section 4.1.";
reference
"RFC 2986: PKCS #10: Certification Request Syntax
Specification Version 1.7";
}
leaf attributes {
type binary;
description
"The 'attributes' field in the CertificationRequestInfo
defined in RFC 2986, Section 4.1.";
reference
"RFC 2986: PKCS #10: Certification Request Syntax
Specification Version 1.7";
}
}
output {
leaf certificate-signing-request {
type binary;
mandatory true;
description
"The CertificationRequestInfo structure as specified
by RFC 2986, Section 4.1.";
reference
"RFC 2986: PKCS #10: Certification Request Syntax
Specification Version 1.7";
}
}
}
} container private-keys {
action generate-private-key {
description description
"Generates a private key using the specified algorithm and "A list of private key maintained by the keychain.";
key length."; list private-key {
input { key name;
description
"A private key.";
leaf name { leaf name {
type string; type string;
mandatory true;
description description
"The name this private-key should have when listed in "An arbitrary name for the private key.";
/keychain/private-keys/private-key. As such, the
passed value must not match any existing 'name' value.";
} }
leaf algorithm { leaf algorithm {
type enumeration { type enumeration {
enum rsa { description "TBD"; } enum rsa { description "TBD"; }
enum dsa { description "TBD"; } enum dsa { description "TBD"; }
enum secp192r1 { description "TBD"; } enum secp192r1 { description "TBD"; }
enum sect163k1 { description "TBD"; } enum sect163k1 { description "TBD"; }
enum sect163r2 { description "TBD"; } enum sect163r2 { description "TBD"; }
enum secp224r1 { description "TBD"; } enum secp224r1 { description "TBD"; }
enum sect233k1 { description "TBD"; } enum sect233k1 { description "TBD"; }
skipping to change at page 49, line 39 skipping to change at page 16, line 50
enum secp256r1 { description "TBD"; } enum secp256r1 { description "TBD"; }
enum sect283k1 { description "TBD"; } enum sect283k1 { description "TBD"; }
enum sect283r1 { description "TBD"; } enum sect283r1 { description "TBD"; }
enum secp384r1 { description "TBD"; } enum secp384r1 { description "TBD"; }
enum sect409k1 { description "TBD"; } enum sect409k1 { description "TBD"; }
enum sect409r1 { description "TBD"; } enum sect409r1 { description "TBD"; }
enum secp521r1 { description "TBD"; } enum secp521r1 { description "TBD"; }
enum sect571k1 { description "TBD"; } enum sect571k1 { description "TBD"; }
enum sect571r1 { description "TBD"; } enum sect571r1 { description "TBD"; }
} }
mandatory true; config false;
description description
"The algorithm to be used."; "The algorithm used by the private key.";
} }
leaf key-length { leaf key-length {
type uint32; type uint32;
mandatory true; config false;
description description
"The key length to be used."; "The key-length used by the private key.";
}
leaf public-key {
type string;
config false;
description
"The public-key matching the private key.";
}
container certificates {
list certificate {
key name;
description
"A certificate for this public key.";
leaf name {
type string;
description
"An arbitrary name for the certificate.";
}
leaf chain {
type binary;
description
"The certificate itself, as well as an ordered
sequence of intermediate certificates leading
to a trust anchor, as specified by RFC 5246,
Section 7.4.2.";
reference
"RFC 5246: The Transport Layer Security (TLS)
Protocol Version 1.2";
}
}
description
"A list of certificates for this public key.";
}
action generate-certificate-signing-request {
description
"Generates a certificate signing request structure for
the associated private key using the passed subject
and attribute values.";
input {
leaf subject {
type binary;
mandatory true;
description
"The distinguished name of the certificate subject
(the entity whose public key is to be certified).
This field is encoded the same as the 'subject'
field in the CertificationRequestInfo type defined
in RFC 2986, Section 4.1.";
reference
"RFC 2986: PKCS #10: Certification Request Syntax
Specification Version 1.7";
}
leaf attributes {
type binary;
description
"A collection of attributes providing additional
information about the subject of the certificate.
This field is encoded the same as the 'attributes'
field in the CertificationRequestInfo type defined
in RFC 2986, Section 4.1.";
reference
"RFC 2986: PKCS #10: Certification Request Syntax
Specification Version 1.7";
}
}
output {
leaf certificate-signing-request {
type binary;
mandatory true;
description
"The certificate signing request to be signed by
a certificate authority. This field is encoded
as the CertificationRequest type defined in
RFC 2986, Section 4.2.";
reference
"RFC 2986: PKCS #10: Certification Request Syntax
Specification Version 1.7";
}
}
}
}
action generate-private-key {
description
"Generates a private key using the specified algorithm and
key length.";
input {
leaf name {
type string;
mandatory true;
description
"The name this private-key should have when listed
in /keychain/private-keys. As such, the passed
value must not match any existing 'name' value.";
}
leaf algorithm {
type enumeration {
enum rsa { description "TBD"; }
enum dsa { description "TBD"; }
enum secp192r1 { description "TBD"; }
enum sect163k1 { description "TBD"; }
enum sect163r2 { description "TBD"; }
enum secp224r1 { description "TBD"; }
enum sect233k1 { description "TBD"; }
enum sect233r1 { description "TBD"; }
enum secp256r1 { description "TBD"; }
enum sect283k1 { description "TBD"; }
enum sect283r1 { description "TBD"; }
enum secp384r1 { description "TBD"; }
enum sect409k1 { description "TBD"; }
enum sect409r1 { description "TBD"; }
enum secp521r1 { description "TBD"; }
enum sect571k1 { description "TBD"; }
enum sect571r1 { description "TBD"; }
}
mandatory true;
description
"The algorithm to be used.";
}
leaf key-length {
type uint32;
description
"For algorithms that need a key length specified
when generating the key.";
}
} }
} }
} }
}
list trusted-certificates { list trusted-certificates {
key name;
description
"A list of lists of trusted certificates.";
leaf name {
type string;
description
"An arbitrary name for this list of trusted certificates.";
}
list trusted-certificate {
key name; key name;
description description
"A list of trusted certificates for a specific use."; "A list of lists of trusted certificates.";
leaf name { leaf name {
type string; type string;
description description
"An arbitrary name for this trusted certificate."; "An arbitrary name for this list of trusted
certificates.";
} }
leaf certificate { leaf description {
type binary; type string;
description description
"The binary certificate structure as specified by RFC "An arbitrary description for this list of trusted
5246, Section 7.4.6, i.e.,: opaque ASN.1Cert<1..2^24>; certificates.";
";
reference
"RFC 5246: The Transport Layer Security (TLS)
Protocol Version 1.2";
} }
} list trusted-certificate {
} key name;
} description
"A list of trusted certificates for a specific use.";
rpc generate-certificate-signing-request { leaf name {
description type string;
"Generates a certificate signing request structure for description
the specified private key using the passed subject "An arbitrary name for this trusted certificate.";
and attribute values."; }
input { leaf certificate {
leaf private-key { type binary;
type leafref { description
path "/keychain/private-keys/private-key/name"; "The binary certificate structure as specified by RFC
5246, Section 7.4.6, i.e.,: opaque ASN.1Cert<1..2^24>;
";
reference
"RFC 5246: The Transport Layer Security (TLS)
Protocol Version 1.2";
}
} }
description
"The private key to generate the certificate signing
request for.";
}
leaf subject {
type binary;
mandatory true;
description
"The 'subject' field in the CertificationRequestInfo
defined in RFC 2986, Section 4.1.";
reference
"RFC 2986: PKCS #10: Certification Request Syntax
Specification Version 1.7";
}
leaf attributes {
type binary;
description
"The 'attributes' field in the CertificationRequestInfo
defined in RFC 2986, Section 4.1.";
reference
"RFC 2986: PKCS #10: Certification Request Syntax
Specification Version 1.7";
}
}
output {
leaf certificate-signing-request {
type binary;
mandatory true;
description
"The CertificationRequestInfo structure as specified
by RFC 2986, Section 4.1.";
reference
"RFC 2986: PKCS #10: Certification Request Syntax
Specification Version 1.7";
} }
} }
} }
rpc generate-private-key { <CODE ENDS>
description
"Generates a private key using the specified algorithm and
key length.";
input {
leaf name {
type string;
mandatory true;
description
"The name this private-key should have when listed in
/keychain/private-keys/private-key. As such, the
passed value must not match any existing 'name' value.";
}
leaf algorithm {
type enumeration {
enum rsa { description "TBD"; }
enum dsa { description "TBD"; }
enum secp192r1 { description "TBD"; }
enum sect163k1 { description "TBD"; }
enum sect163r2 { description "TBD"; }
enum secp224r1 { description "TBD"; }
enum sect233k1 { description "TBD"; }
enum sect233r1 { description "TBD"; }
enum secp256r1 { description "TBD"; }
enum sect283k1 { description "TBD"; }
enum sect283r1 { description "TBD"; }
enum secp384r1 { description "TBD"; }
enum sect409k1 { description "TBD"; }
enum sect409r1 { description "TBD"; }
enum secp521r1 { description "TBD"; }
enum sect571k1 { description "TBD"; }
enum sect571r1 { description "TBD"; }
}
mandatory true;
description
"The algorithm to be used.";
}
leaf key-length {
type uint32;
mandatory true;
description
"The key length to be used.";
}
}
}
}
<CODE ENDS> 4.2. The SSH Server Model
A.2. The SSH Server Model The SSH Server model presented in this section presents two YANG
groupings, one for a server that opens a socket to accept TCP
connections on, and another for a server that has had the TCP
connection opened for it already (e.g., inetd).
A.2.1. Tree Diagram The SSH Server model (like the TLS Server model presented below) is
provided as a grouping so that it can be used in different contexts.
For instance, the NETCONF Server model presented in Section 4.4 uses
one grouping to configure a NETCONF server listening for connections
and the other grouping to configure NETCONF call home.
The following tree diagram is faked, as a module having only a A shared characteristic between both groupings is the ability to
grouping in it has no tree diagram. However, for illustrative configure which host key is presented to clients, the private key for
purposes, a container has been added as nothing more than a "uses" which is held in the keychain configuration presented before.
statement of the grouping. Another shared characteristic is the ability to configure which
trusted CA or client certificates the server should be used to
authenticate clients when using X.509 based client certificates
[RFC6187].
module: ietf-ssh-server 4.2.1. Tree Diagram
+--rw fake-ssh-server
+--rw host-keys
| +--rw host-key* [name]
| +--rw name string
| +--rw (type)?
| +--:(public-key)
| | +--rw public-key? -> /kc:keychain/private-keys/private-key/name
| +--:(certificate)
| +--rw certificate? -> /kc:keychain/private-keys/private-key/certificates/certificate/name {ssh-x509-certs}?
+--rw client-cert-auth {ssh-x509-certs}?
+--rw trusted-ca-certs? -> /kc:keychain/trusted-certificates/name
+--rw trusted-client-certs? -> /kc:keychain/trusted-certificates/name
A.2.2. Example Usage The following tree diagram represents the data model for the grouping
used to configure an SSH server to listen for TCP connections. The
tree diagram for the other grouping is not provided, but it is the
same except without the "address" and "port" fields.
<fake-ssh-server xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-server"> NOTE: the diagram below shows "listening-ssh-server" as a YANG
container (not a grouping). This temporary container was created
only to enable the `pyang` tool to output the tree diagram, as
groupings by themselves have no protocol accessible nodes, and hence
`pyang` would output an empty tree diagram.
module: ietf-ssh-server
+--rw listening-ssh-server
+--rw address? inet:ip-address
+--rw port inet:port-number
+--rw host-keys
| +--rw host-key* [name]
| +--rw name string
| +--rw (type)?
| +--:(public-key)
| | +--rw public-key? -> /kc:keychain/private-keys/pri
vate-key/name
| +--:(certificate)
| +--rw certificate? -> /kc:keychain/private-keys/pri
vate-key/certificates/certificate/name {ssh-x509-certs}?
+--rw client-cert-auth {ssh-x509-certs}?
+--rw trusted-ca-certs? -> /kc:keychain/trusted-certific
ates/name
+--rw trusted-client-certs? -> /kc:keychain/trusted-certific
ates/name
4.2.2. Example Usage
This section shows how it would appear if the temporary listening-
ssh-server container just mentioned above were populated with some
data. This example is consistent with the examples presented earlier
in this document.
<listening-ssh-server
xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-server">
<port>830</port>
<host-keys> <host-keys>
<host-key> <host-key>
<name>IDevID</name> <name>deployment-specific-certificate</name>
<certificate> <certificate>ex-key-sect571r1-cert</certificate>
IDevID Certificate
</certificate>
</host-key> </host-key>
</host-keys> </host-keys>
</certificates> </certificates>
<client-cert-auth> <client-cert-auth>
<trusted-ca-certs> <trusted-ca-certs>
Trusted certificates for netconf/restconf clients deployment-specific-ca-certs
</trusted-ca-certs> </trusted-ca-certs>
<trusted-client-certs> <trusted-client-certs>
Trust anchors for netconf/restconf clients explicitly-trusted-client-certs
</trusted-client-certs> </trusted-client-certs>
</client-cert-auth> </client-cert-auth>
</fake-ssh-server> </listening-ssh-server>
A.2.3. YANG Model 4.2.3. YANG Model
<CODE BEGINS> file "ietf-ssh-server@2015-07-06.yang" <CODE BEGINS> file "ietf-ssh-server@2015-10-09.yang"
module ietf-ssh-server { module ietf-ssh-server {
yang-version 1.1; yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-ssh-server"; namespace "urn:ietf:params:xml:ns:yang:ietf-ssh-server";
prefix "ts"; prefix "ts";
import ietf-keychain {
prefix kc; // RFC VVVV
}
organization import ietf-inet-types { // RFC 6991
"IETF NETCONF (Network Configuration) Working Group"; prefix inet;
}
import ietf-keychain {
prefix kc; // RFC VVVV
revision-date 2015-10-09;
}
contact organization
"WG Web: <http://tools.ietf.org/wg/netconf/> "IETF NETCONF (Network Configuration) Working Group";
WG List: <mailto:netconf@ietf.org>
WG Chair: Mehmet Ersue contact
<mailto:mehmet.ersue@nsn.com> "WG Web: <http://tools.ietf.org/wg/netconf/>
WG List: <mailto:netconf@ietf.org>
WG Chair: Mahesh Jethanandani WG Chair: Mehmet Ersue
<mailto:mjethanandani@gmail.com> <mailto:mehmet.ersue@nsn.com>
Editor: Kent Watsen WG Chair: Mahesh Jethanandani
<mailto:kwatsen@juniper.net>"; <mailto:mjethanandani@gmail.com>
description Editor: Kent Watsen
"This module defines a reusable grouping for a SSH server that <mailto:kwatsen@juniper.net>";
can be used as a basis for specific SSH server instances.
Copyright (c) 2014 IETF Trust and the persons identified as description
authors of the code. All rights reserved. "This module defines a reusable grouping for a SSH server that
can be used as a basis for specific SSH server instances.
Redistribution and use in source and binary forms, with or Copyright (c) 2014 IETF Trust and the persons identified as
without modification, is permitted pursuant to, and subject authors of the code. All rights reserved.
to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC VVVV; see Redistribution and use in source and binary forms, with or
the RFC itself for full legal notices."; without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info).
revision "2015-07-06" { This version of this YANG module is part of RFC VVVV; see
description the RFC itself for full legal notices.";
"Initial version";
reference
"RFC VVVV: NETCONF Server and RESTCONF Server Configuration
Models";
}
// features revision "2015-10-09" {
feature ssh-x509-certs { description
description "Initial version";
"The ssh-x509-certs feature indicates that the NETCONF server reference
supports RFC 6187"; "RFC VVVV: NETCONF Server and RESTCONF Server Configuration
reference Models";
"RFC 6187: X.509v3 Certificates for Secure Shell Authentication"; }
}
// grouping // features
grouping ssh-server-grouping { feature ssh-x509-certs {
description description
"A reusable grouping for a SSH server that can be used as a "The ssh-x509-certs feature indicates that the NETCONF
basis for specific SSH server instances."; server supports RFC 6187";
reference
"RFC 6187: X.509v3 Certificates for Secure Shell
Authentication";
}
container host-keys { // grouping
description grouping non-listening-ssh-server-grouping {
"The list of host-keys the SSH server will present when description
establishing a SSH connection."; "A reusable grouping for a SSH server that can be used as a
list host-key { basis for specific SSH server instances.";
key name;
min-elements 1;
ordered-by user;
description
"An ordered list of hostkeys the SSH server advertises
when sending its ??? message.";
reference
"RFC ????: ...";
leaf name {
type string;
mandatory true;
description
"An arbitrary name for this host-key";
}
choice type {
leaf public-key {
type leafref {
path "/kc:keychain/kc:private-keys/kc:private-key/kc:name";
}
description
"The name of a private-key in the keychain.";
}
leaf certificate {
if-feature ssh-x509-certs;
type leafref {
path "/kc:keychain/kc:private-keys/kc:private-key/kc:certificates/kc:certificate/kc:name";
}
description
"The name of a certificate in the keychain.";
}
} container host-keys {
} description
} "The list of host-keys the SSH server will present when
establishing a SSH connection.";
list host-key {
key name;
min-elements 1;
ordered-by user;
description
"An ordered list of host keys the SSH server advertises
when sending its ??? message.";
reference
"RFC ????: ...";
leaf name {
type string;
mandatory true;
description
"An arbitrary name for this host-key";
}
choice type {
description
"The type of host key being specified";
leaf public-key {
type leafref {
path "/kc:keychain/kc:private-keys/kc:private-key/"
+ "kc:name";
}
description
"The name of a private-key in the keychain.";
}
leaf certificate {
if-feature ssh-x509-certs;
type leafref {
path "/kc:keychain/kc:private-keys/kc:private-key/"
+ "kc:certificates/kc:certificate/kc:name";
}
description
"The name of a certificate in the keychain.";
}
}
}
}
container client-cert-auth { container client-cert-auth {
if-feature ssh-x509-certs; if-feature ssh-x509-certs;
description description
"A reference to a list of trusted certificate authority (CA) "A reference to a list of trusted certificate authority (CA)
certificates and a reference to a list of trusted client certificates and a reference to a list of trusted client
certificates."; certificates.";
leaf trusted-ca-certs { leaf trusted-ca-certs {
type leafref { type leafref {
path "/kc:keychain/kc:trusted-certificates/kc:name"; path "/kc:keychain/kc:trusted-certificates/kc:name";
} }
description description
"A reference to a list of certificate authority (CA) "A reference to a list of certificate authority (CA)
certificates used by the SSH server to authenticate certificates used by the SSH server to authenticate
SSH client certificates."; SSH client certificates.";
} }
leaf trusted-client-certs { leaf trusted-client-certs {
type leafref { type leafref {
path "/kc:keychain/kc:trusted-certificates/kc:name"; path "/kc:keychain/kc:trusted-certificates/kc:name";
} }
description description
"A reference to a list of client certificates used by "A reference to a list of client certificates used by
the SSH server to authenticate SSH client certificates. the SSH server to authenticate SSH client certificates.
A clients certificate is authenticated if it is an A clients certificate is authenticated if it is an
exact match to a configured trusted client certificate."; exact match to a configured trusted client certificate.";
} }
} }
} }
}
<CODE ENDS> grouping listening-ssh-server-grouping {
description
"A reusable grouping for a SSH server that can be used as a
basis for specific SSH server instances.";
leaf address {
type inet:ip-address;
description
"The IP address of the interface to listen on. The SSH
server will listen on all interfaces if no value is
specified.";
}
leaf port {
type inet:port-number;
mandatory true; // will a default augmented in work?
description
"The local port number on this interface the SSH server
listens on.";
}
uses non-listening-ssh-server-grouping;
}
A.3. The TLS Server Model // RFC Editor: please remove the following container block
// when publishing this document as an RFC.
A.3.1. Tree Diagram container listening-ssh-server {
description
"This container is only present to enable `pyang`
tree diagram output, as a grouping by itself has
no protocol accessible nodes to output.";
The following tree diagram is faked, as a module having only a uses listening-ssh-server-grouping;
grouping in it has no tree diagram. However, for illustrative }
purposes, a container has been added as nothing more than a "uses"
statement of the grouping.
module: ietf-tls-server }
+--rw fake-tls-server
+--rw certificates
| +--rw certificate* [name]
| +--rw name -> /kc:keychain/private-keys/private-key/certificates/certificate/name
+--rw client-auth
+--rw trusted-ca-certs? -> /kc:keychain/trusted-certificates/name
+--rw trusted-client-certs? -> /kc:keychain/trusted-certificates/name
A.3.2. Example Usage <CODE ENDS>
<fake-tls-server xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server"> 4.3. The TLS Server Model
</certificates>
The TLS Server model presented in this section presents two YANG
groupings, one for a server that opens a socket to accept TCP
connections on, and another for a server that has had the TCP
connection opened for it already (e.g., inetd).
The TLS Server model (like the SSH Server model presented above) is
provided as a grouping so that it can be used in different contexts.
For instance, the NETCONF Server model presented in Section 4.4 uses
one grouping to configure a NETCONF server listening for connections
and the other grouping to configure NETCONF call home.
A shared characteristic between both groupings is the ability to
configure which server certificate is presented to clients, the
private key for which is held in the keychain model presented in
Section 4.1. Another shared characteristic is the ability to
configure which trusted CA or client certificates the server should
be used to authenticate clients.
4.3.1. Tree Diagram
The following tree diagram represents the data model for the grouping
used to configure an TLS server to listen for TCP connections. The
tree diagram for the other grouping is not provided, but it is the
same except without the "address" and "port" fields.
NOTE: the diagram below shows "listening-ssh-server" as a YANG
container (not a grouping). This temporary container was created
only to enable the `pyang` tool to output the tree diagram, as
groupings by themselves have no protocol accessible nodes, and hence
`pyang` would output an empty tree diagram.
module: ietf-tls-server
+--rw listening-tls-server
+--rw address? inet:ip-address
+--rw port inet:port-number
+--rw certificates
| +--rw certificate* [name]
| +--rw name -> /kc:keychain/private-keys/private-key/cert
ificates/certificate/name
+--rw client-auth
+--rw trusted-ca-certs? -> /kc:keychain/trusted-certific
ates/name
+--rw trusted-client-certs? -> /kc:keychain/trusted-certific
ates/name
4.3.2. Example Usage
<listening-tls-server
xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server">
<port>6513</port>
<certificates>
<certificate> <certificate>
IDevID Certificate <name>ex-key-sect571r1-cert</name>
</certificate> </certificate>
</certificates> </certificates>
<client-auth> <client-auth>
<trusted-ca-certs> <trusted-ca-certs>
Trusted certificates for netconf/restconf clients deployment-specific-ca-certs
</trusted-ca-certs> </trusted-ca-certs>
<trusted-client-certs> <trusted-client-certs>
Trust anchors for netconf/restconf clients explicitly-trusted-client-certs
</trusted-client-certs> </trusted-client-certs>
</client-auth> </client-auth>
</fake-tls-server> </listening-tls-server>
A.3.3. YANG Model 4.3.3. YANG Model
<CODE BEGINS> file "ietf-tls-server@2015-07-06.yang" <CODE BEGINS> file "ietf-tls-server@2015-10-09.yang"
module ietf-tls-server { module ietf-tls-server {
yang-version 1.1; yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-tls-server"; namespace "urn:ietf:params:xml:ns:yang:ietf-tls-server";
prefix "ts"; prefix "ts";
import ietf-keychain { import ietf-inet-types { // RFC 6991
prefix kc; // RFC VVVV prefix inet;
} }
import ietf-keychain {
prefix kc; // RFC VVVV
revision-date 2015-10-09;
}
organization organization
"IETF NETCONF (Network Configuration) Working Group"; "IETF NETCONF (Network Configuration) Working Group";
contact contact
"WG Web: <http://tools.ietf.org/wg/netconf/> "WG Web: <http://tools.ietf.org/wg/netconf/>
WG List: <mailto:netconf@ietf.org> WG List: <mailto:netconf@ietf.org>
WG Chair: Mehmet Ersue WG Chair: Mehmet Ersue
<mailto:mehmet.ersue@nsn.com> <mailto:mehmet.ersue@nsn.com>
WG Chair: Mahesh Jethanandani WG Chair: Mahesh Jethanandani
<mailto:mjethanandani@gmail.com> <mailto:mjethanandani@gmail.com>
Editor: Kent Watsen Editor: Kent Watsen
<mailto:kwatsen@juniper.net>"; <mailto:kwatsen@juniper.net>";
description description
"This module defines a reusable grouping for a TLS server that "This module defines a reusable grouping for a TLS server that
can be used as a basis for specific TLS server instances. can be used as a basis for specific TLS server instances.
Copyright (c) 2014 IETF Trust and the persons identified as Copyright (c) 2014 IETF Trust and the persons identified as
authors of the code. All rights reserved. authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info). (http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC VVVV; see This version of this YANG module is part of RFC VVVV; see
the RFC itself for full legal notices."; the RFC itself for full legal notices.";
revision "2015-07-06" { revision "2015-10-09" {
description description
"Initial version"; "Initial version";
reference reference
"RFC VVVV: NETCONF Server and RESTCONF Server Configuration "RFC VVVV: NETCONF Server and RESTCONF Server Configuration
Models"; Models";
} }
// grouping
grouping non-listening-tls-server-grouping {
description
"A reusable grouping for a TLS server that can be used as a
basis for specific TLS server instances.";
container certificates {
description
"The list of certificates the TLS server will present when
establishing a TLS connection.";
list certificate {
key name;
min-elements 1;
description
"An unordered list of certificates the TLS server can pick
from when sending its Server Certificate message.";
reference
"RFC 5246: The TLS Protocol, Section 7.4.2";
leaf name {
type leafref {
path "/kc:keychain/kc:private-keys/kc:private-key/"
+ "kc:certificates/kc:certificate/kc:name";
}
description
"The name of the certificate in the keychain.";
}
}
}
grouping tls-server-grouping { container client-auth {
description description
"A reusable grouping for a TLS server that can be used as a "A reference to a list of trusted certificate authority (CA)
basis for specific TLS server instances."; certificates and a reference to a list of trusted client
certificates.";
leaf trusted-ca-certs {
type leafref {
path "/kc:keychain/kc:trusted-certificates/kc:name";
}
description
"A reference to a list of certificate authority (CA)
certificates used by the TLS server to authenticate
TLS client certificates.";
}
container certificates { leaf trusted-client-certs {
description type leafref {
"The list of certificates the TLS server will present when path "/kc:keychain/kc:trusted-certificates/kc:name";
establishing a TLS connection."; }
list certificate { description
key name; "A reference to a list of client certificates used by
min-elements 1; the TLS server to authenticate TLS client certificates.
description A clients certificate is authenticated if it is an
"An unordered list of certificates the TLS server can pick exact match to a configured trusted client certificate.";
from when sending its Server Certificate message."; }
reference }
"RFC 5246: The TLS Protocol, Section 7.4.2"; }
leaf name {
type leafref {
path "/kc:keychain/kc:private-keys/kc:private-key/kc:certificates/kc:certificate/kc:name";
}
description
"The name of the certificate in the keychain.";
}
}
}
container client-auth { grouping listening-tls-server-grouping {
description description
"A reference to a list of trusted certificate authority (CA) "A reusable grouping for a TLS server that can be used as a
certificates and a reference to a list of trusted client basis for specific TLS server instances.";
certificates."; leaf address {
leaf trusted-ca-certs { type inet:ip-address;
type leafref { description
path "/kc:keychain/kc:trusted-certificates/kc:name"; "The IP address of the interface to listen on. The TLS
} server will listen on all interfaces if no value is
description specified.";
"A reference to a list of certificate authority (CA) }
certificates used by the TLS server to authenticate leaf port {
TLS client certificates."; type inet:port-number;
} mandatory true; // will a default augmented in work?
description
"The local port number on this interface the TLTLS server
listens on.";
}
uses non-listening-tls-server-grouping;
}
leaf trusted-client-certs { // RFC Editor: please remove the following container block
type leafref { // when publishing this document as an RFC.
path "/kc:keychain/kc:trusted-certificates/kc:name"; container listening-tls-server {
} description
description "This container is only present to enable `pyang`
"A reference to a list of client certificates used by tree diagram output, as a grouping by itself has
the TLS server to authenticate TLS client certificates. no protocol accessible nodes to output.";
A clients certificate is authenticated if it is an
exact match to a configured trusted client certificate.";
}
}
}
}
<CODE ENDS>
A.4. The NETCONF Server Model uses listening-tls-server-grouping;
}
A.4.1. Tree Diagram }
<CODE ENDS>
module: ietf-netconf-server-new 4.4. The NETCONF Server Model
+--rw netconf-server
+--rw session-options
| +--rw hello-timeout? uint16
+--rw listen {(ssh-listen or tls-listen)}?
| +--rw max-sessions? uint16
| +--rw idle-timeout? uint16
| +--rw endpoint* [name]
| +--rw name string
| +--rw (transport)
| +--:(ssh) {ssh-listen}?
| | +--rw ssh
| | +--rw address? inet:ip-address
| | +--rw port? inet:port-number
| | +--rw host-keys
| | | +--rw host-key* [name]
| | | +--rw name string
| | | +--rw (type)?
| | | +--:(public-key)
| | | | +--rw public-key? -> /kc:keychain/private-keys/private-key/name
| | | +--:(certificate)
| | | +--rw certificate? -> /kc:keychain/private-keys/private-key/certificates/certificate/name {ssh-x509-certs}?
| | +--rw client-cert-auth {ssh-x509-certs}?
| | +--rw trusted-ca-certs? -> /kc:keychain/trusted-certificates/name
| | +--rw trusted-client-certs? -> /kc:keychain/trusted-certificates/name
| +--:(tls) {tls-listen}?
| +--rw tls
| +--rw address? inet:ip-address
| +--rw port? inet:port-number
| +--rw certificates
| | +--rw certificate* [name]
| | +--rw name -> /kc:keychain/private-keys/private-key/certificates/certificate/name
| +--rw client-auth
| +--rw trusted-ca-certs? -> /kc:keychain/trusted-certificates/name
| +--rw trusted-client-certs? -> /kc:keychain/trusted-certificates/name
| +--rw cert-maps
| +--rw cert-to-name* [id]
| +--rw id uint32
| +--rw fingerprint x509c2n:tls-fingerprint
| +--rw map-type identityref
| +--rw name string
+--rw call-home {(ssh-call-home or tls-call-home)}?
+--rw netconf-client* [name]
+--rw name string
+--rw (transport)
| +--:(ssh) {ssh-call-home}?
| | +--rw ssh
| | +--rw endpoints
| | | +--rw endpoint* [name]
| | | +--rw name string
| | | +--rw address inet:host
| | | +--rw port? inet:port-number
| | +--rw host-keys
| | | +--rw host-key* [name]
| | | +--rw name string
| | | +--rw (type)?
| | | +--:(public-key)
| | | | +--rw public-key? -> /kc:keychain/private-keys/private-key/name
| | | +--:(certificate)
| | | +--rw certificate? -> /kc:keychain/private-keys/private-key/certificates/certificate/name {ssh-x509-certs}?
| | +--rw client-cert-auth {ssh-x509-certs}?
| | +--rw trusted-ca-certs? -> /kc:keychain/trusted-certificates/name
| | +--rw trusted-client-certs? -> /kc:keychain/trusted-certificates/name
| +--:(tls) {tls-call-home}?
| +--rw tls
| +--rw endpoints
| | +--rw endpoint* [name]
| | +--rw name string
| | +--rw address inet:host
| | +--rw port? inet:port-number
| +--rw certificates
| | +--rw certificate* [name]
| | +--rw name -> /kc:keychain/private-keys/private-key/certificates/certificate/name
| +--rw client-auth
| +--rw trusted-ca-certs? -> /kc:keychain/trusted-certificates/name
| +--rw trusted-client-certs? -> /kc:keychain/trusted-certificates/name
| +--rw cert-maps
| +--rw cert-to-name* [id]
| +--rw id uint32
| +--rw fingerprint x509c2n:tls-fingerprint
| +--rw map-type identityref
| +--rw name string
+--rw connection-type
| +--rw (connection-type)?
| +--:(persistent-connection)
| | +--rw persistent!
| | +--rw idle-timeout? uint32
| | +--rw keep-alives
| | +--rw max-wait? uint16
| | +--rw max-attempts? uint8
| +--:(periodic-connection)
| +--rw periodic!
| +--rw idle-timeout? uint16
| +--rw reconnect_timeout? uint16
+--rw reconnect-strategy
+--rw start-with? enumeration
+--rw max-attempts? uint8
A.4.2. Example Usage The NETCONF Server model presented in this section supports servers
both listening for connections to accept as well as initiating call-
home connections. This model also supports both the SSH and TLS
transport protocols, using the SSH Server and TLS Server groupings
presented in Section 4.2 and Section 4.3 respectively. All private
keys and trusted certificates are held in the keychain model
presented in Section 4.1. YANG feature statements are used to enable
implementations to advertise which parts of the model the NETCONF
server supports.
Configuring an SSH Server 4.4.1. Tree Diagram
<netconf-server xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-server"> The following tree diagram uses line-wrapping in order to comply with
<listen> xml2rfc validation. This is annoying as I find that drafts (even txt
<endpoint> drafts) look just fine with long lines - maybe xml2rfc should remove
<name>netconf/ssh</name> this warning? - or pyang could have an option to suppress printing
<ssh> leafref paths?
<address>11.22.33.44</address>
<host-keys>
<host-key>
<public-key>my-rsa-key</public-key>
</host-key>
<host-key>
<certificate>TPM key</certificate>
</host-key>
</host-keys>
<client-cert-auth>
<trusted-ca-certs>
Trusted netconf/restconf client certificates
</trusted-ca-certs>
<trusted-client-certs>
Trust anchors for netconf/restconf clients
</trusted-client-certs>
</client-cert-auth>
</ssh>
</endpoint>
</listen>
<call-home>
<netconf-client>
<name>config-mgr</name>
<ssh>
<endpoints>
<endpoint>
<name>east-data-center</name>
<address>11.22.33.44</address>
</endpoint>
<endpoint>
<name>west-data-center</name>
<address>55.66.77.88</address>
</endpoint>
</endpoints>
<host-keys>
<host-key>
<certificate>TPM key</certificate>
</host-key>
</host-keys>
<client-cert-auth>
<trusted-ca-certs>
Trusted netconf/restconf client certificates
</trusted-ca-certs>
<trusted-client-certs>
Trust anchors for netconf/restconf clients
</trusted-client-certs>
</client-cert-auth>
</ssh>
</netconf-client>
</call-home>
</netconf-server>
Configuring a TLS Server module: ietf-netconf-server
+--rw netconf-server
+--rw session-options
| +--rw hello-timeout? uint16
+--rw listen {(ssh-listen or tls-listen)}?
| +--rw max-sessions? uint16
| +--rw idle-timeout? uint16
| +--rw endpoint* [name]
| +--rw name string
| +--rw (transport)
| +--:(ssh) {ssh-listen}?
| | +--rw ssh
| | +--rw address? inet:ip-address
| | +--rw port inet:port-number
| | +--rw host-keys
| | | +--rw host-key* [name]
| | | +--rw name string
| | | +--rw (type)?
| | | +--:(public-key)
| | | | +--rw public-key? -> /kc:keychain/p
rivate-keys/private-key/name
| | | +--:(certificate)
| | | +--rw certificate? -> /kc:keychain/p
rivate-keys/private-key/certificates/certificate/name {ssh-x509-certs}?
| | +--rw client-cert-auth {ssh-x509-certs}?
| | +--rw trusted-ca-certs? -> /kc:keychain/t
<netconf-server xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-server" rusted-certificates/name
xmlns:x509c2n="urn:ietf:params:xml:ns:yang:ietf-x509-cert-to-name"> | | +--rw trusted-client-certs? -> /kc:keychain/t
<listen> rusted-certificates/name
<endpoint> | +--:(tls) {tls-listen}?
<name>netconf/tls</name> | +--rw tls
<tls> | +--rw address? inet:ip-address
<address>11.22.33.44</address> | +--rw port inet:port-number
<certificates> | +--rw certificates
<certificate>IDevID Certificate</certificate> | | +--rw certificate* [name]
</certificates> | | +--rw name -> /kc:keychain/private-keys/p
<client-auth> rivate-key/certificates/certificate/name
<trusted-ca-certs> | +--rw client-auth
Trusted netconf/restconf client certificates | +--rw trusted-ca-certs? -> /kc:keychain/t
</trusted-ca-certs> rusted-certificates/name
<trusted-client-certs> | +--rw trusted-client-certs? -> /kc:keychain/t
Trust anchors for netconf/restconf clients rusted-certificates/name
</trusted-client-certs> | +--rw cert-maps
<cert-maps> | +--rw cert-to-name* [id]
<cert-to-name> | +--rw id uint32
<id>1</id> | +--rw fingerprint x509c2n:tls-fingerpr
<fingerprint>11:0A:05:11:00</fingerprint> int
<map-type>x509c2n:san-any</map-type> | +--rw map-type identityref
</cert-to-name> | +--rw name string
<cert-to-name> +--rw call-home {(ssh-call-home or tls-call-home)}?
<id>2</id> +--rw netconf-client* [name]
<fingerprint>B3:4F:A1:8C:54</fingerprint> +--rw name string
<map-type>x509c2n:specified</map-type> +--rw (transport)
<name>scooby-doo</name> | +--:(ssh) {ssh-call-home}?
</cert-to-name> | | +--rw ssh
</cert-maps> | | +--rw endpoints
</client-auth> | | | +--rw endpoint* [name]
</tls> | | | +--rw name string
</endpoint> | | | +--rw address inet:host
</listen> | | | +--rw port? inet:port-number
<call-home> | | +--rw host-keys
<netconf-client> | | | +--rw host-key* [name]
<name>config-mgr</name> | | | +--rw name string
<tls> | | | +--rw (type)?
<endpoints> | | | +--:(public-key)
<endpoint> | | | | +--rw public-key? -> /kc:keychain/p
<name>east-data-center</name> rivate-keys/private-key/name
<address>22.33.44.55</address> | | | +--:(certificate)
</endpoint> | | | +--rw certificate? -> /kc:keychain/p
<endpoint> rivate-keys/private-key/certificates/certificate/name {ssh-x509-certs}?
<name>west-data-center</name> | | +--rw client-cert-auth {ssh-x509-certs}?
<address>33.44.55.66</address> | | +--rw trusted-ca-certs? -> /kc:keychain/t
</endpoint> rusted-certificates/name
</endpoints> | | +--rw trusted-client-certs? -> /kc:keychain/t
<certificates>
<certificate>IDevID Certificate</certificate>
</certificates>
</tls>
</netconf-client>
</call-home>
</netconf-server>
A.4.3. YANG Model rusted-certificates/name
| +--:(tls) {tls-call-home}?
| +--rw tls
| +--rw endpoints
| | +--rw endpoint* [name]
| | +--rw name string
| | +--rw address inet:host
| | +--rw port? inet:port-number
| +--rw certificates
| | +--rw certificate* [name]
| | +--rw name -> /kc:keychain/private-keys/p
rivate-key/certificates/certificate/name
| +--rw client-auth
| +--rw trusted-ca-certs? -> /kc:keychain/t
rusted-certificates/name
| +--rw trusted-client-certs? -> /kc:keychain/t
rusted-certificates/name
| +--rw cert-maps
| +--rw cert-to-name* [id]
| +--rw id uint32
| +--rw fingerprint x509c2n:tls-fingerpr
int
| +--rw map-type identityref
| +--rw name string
+--rw connection-type
| +--rw (connection-type)?
| +--:(persistent-connection)
| | +--rw persistent!
| | +--rw idle-timeout? uint32
| | +--rw keep-alives
| | +--rw max-wait? uint16
| | +--rw max-attempts? uint8
| +--:(periodic-connection)
| +--rw periodic!
| +--rw idle-timeout? uint16
| +--rw reconnect_timeout? uint16
+--rw reconnect-strategy
+--rw start-with? enumeration
+--rw max-attempts? uint8
This YANG module imports YANG types from [RFC6991] and [RFC7407]. 4.4.2. Example Usage
<CODE BEGINS> file "ietf-netconf-server-new@2015-07-06.yang" Configuring a NETCONF Server to listen for NETCONF client connections
using both the SSH and TLS transport protocols, as well as
configuring call-home to two NETCONF clients, one using SSH and the
other using TLS.
module ietf-netconf-server-new { This example is consistent with other examples presented in this
yang-version 1.1; document.
namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-server-new"; <netconf-server
prefix "ncserver"; xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-server">
<listen>
import ietf-inet-types { // RFC 6991 <!-- listening for SSH connections -->
prefix inet; <endpoint>
} <name>netconf/ssh</name>
import ietf-x509-cert-to-name { // RFC 7407 <ssh>
prefix x509c2n; <address>11.22.33.44</address>
} <host-keys>
import ietf-ssh-server { // RFC VVVV <host-key>
prefix ss; <public-key>my-rsa-key</public-key>
} </host-key>
import ietf-tls-server { // RFC VVVV <host-key>
prefix ts; <certificate>TPM key</certificate>
} </host-key>
</host-keys>
<client-cert-auth>
<trusted-ca-certs>
deployment-specific-ca-certs
</trusted-ca-certs>
<trusted-client-certs>
explicitly-trusted-client-certs
</trusted-client-certs>
</client-cert-auth>
</ssh>
</endpoint>
organization <!-- listening for TLS connections -->
"IETF NETCONF (Network Configuration) Working Group"; <endpoint>
<name>netconf/tls</name>
<tls>
<address>11.22.33.44</address>
<certificates>
<certificate>ex-key-sect571r1-cert</certificate>
</certificates>
<client-auth>
<trusted-ca-certs>
deployment-specific-ca-certs
</trusted-ca-certs>
<trusted-client-certs>
explicitly-trusted-client-certs
</trusted-client-certs>
<cert-maps>
<cert-to-name>
<id>1</id>
<fingerprint>11:0A:05:11:00</fingerprint>
<map-type>x509c2n:san-any</map-type>
</cert-to-name>
<cert-to-name>
<id>2</id>
<fingerprint>B3:4F:A1:8C:54</fingerprint>
<map-type>x509c2n:specified</map-type>
<name>scooby-doo</name>
</cert-to-name>
</cert-maps>
</client-auth>
</tls>
</endpoint>
contact </listen>
"WG Web: <http://tools.ietf.org/wg/netconf/> <call-home>
WG List: <mailto:netconf@ietf.org>
WG Chair: Mehmet Ersue <!-- calling home to an SSH-based NETCONF client -->
<mailto:mehmet.ersue@nsn.com> <netconf-client>
<name>config-mgr</name>
<ssh>
<endpoints>
<endpoint>
<name>east-data-center</name>
<address>11.22.33.44</address>
</endpoint>
<endpoint>
<name>west-data-center</name>
<address>55.66.77.88</address>
</endpoint>
</endpoints>
<host-keys>
<host-key>
<certificate>TPM key</certificate>
</host-key>
</host-keys>
<client-cert-auth>
<trusted-ca-certs>
deployment-specific-ca-certs
</trusted-ca-certs>
<trusted-client-certs>
explicitly-trusted-client-certs
</trusted-client-certs>
</client-cert-auth>
</ssh>
<connection-type>
<periodic>
<idle-timeout>300</idle-timeout>
<reconnect-timeout>60</reconnect-timeout>
</periodic>
</connection-type>
<reconnect-strategy>
<start-with>last-connected</start-with>
<max-attempts>3</max-attempts>
</reconnect-strategy>
</netconf-client>
WG Chair: Mahesh Jethanandani <!-- calling home to a TLS-based NETCONF client -->
<mailto:mjethanandani@gmail.com> <netconf-client>
<name>event-correlator</name>
<tls>
<endpoints>
<endpoint>
<name>east-data-center</name>
<address>22.33.44.55</address>
</endpoint>
<endpoint>
<name>west-data-center</name>
<address>33.44.55.66</address>
</endpoint>
</endpoints>
<certificates>
<certificate>ex-key-sect571r1-cert</certificate>
</certificates>
<client-auth>
<trusted-ca-certs>
deployment-specific-ca-certs
</trusted-ca-certs>
<trusted-client-certs>
explicitly-trusted-client-certs
</trusted-client-certs>
<cert-maps>
<cert-to-name>
<id>1</id>
<fingerprint>11:0A:05:11:00</fingerprint>
<map-type>x509c2n:san-any</map-type>
</cert-to-name>
<cert-to-name>
<id>2</id>
<fingerprint>B3:4F:A1:8C:54</fingerprint>
<map-type>x509c2n:specified</map-type>
<name>scooby-doo</name>
</cert-to-name>
</cert-maps>
</client-auth>
Editor: Kent Watsen </tls>
<mailto:kwatsen@juniper.net>"; <connection-type>
<persistent>
<idle-timeout>300</idle-timeout>
<keep-alives>
<max-wait>30</max-wait>
<max-attempts>3</max-attempts>
</keep-alives>
</persistent>
</connection-type>
<reconnect-strategy>
<start-with>first-listed</start-with>
<max-attempts>3</max-attempts>
</reconnect-strategy>
</netconf-client>
description </call-home>
"This module contains a collection of YANG definitions for </netconf-server>
configuring NETCONF servers.
Copyright (c) 2014 IETF Trust and the persons identified as 4.4.3. YANG Model
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or This YANG module imports YANG types from [RFC6991] and [RFC7407].
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC VVVV; see <CODE BEGINS> file "ietf-netconf-server@2015-10-09.yang"
the RFC itself for full legal notices.";
revision "2015-07-06" { module ietf-netconf-server {
description yang-version 1.1;
"Initial version";
reference namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-server";
"RFC VVVV: NETCONF Server and RESTCONF Server Configuration prefix "ncserver";
Models";
}
// Features import ietf-inet-types { // RFC 6991
prefix inet;
}
import ietf-x509-cert-to-name { // RFC 7407
prefix x509c2n;
}
import ietf-ssh-server { // RFC VVVV
prefix ss;
revision-date 2015-10-09;
}
import ietf-tls-server { // RFC VVVV
prefix ts;
revision-date 2015-10-09;
}
organization
"IETF NETCONF (Network Configuration) Working Group";
feature ssh-listen { contact
description "WG Web: <http://tools.ietf.org/wg/netconf/>
"The ssh-listen feature indicates that the NETCONF server WG List: <mailto:netconf@ietf.org>
supports opening a port to accept NETCONF over SSH
client connections.";
reference
"RFC 6242: Using the NETCONF Protocol over Secure Shell (SSH)";
}
feature ssh-call-home { WG Chair: Mehmet Ersue
description <mailto:mehmet.ersue@nsn.com>
"The ssh-call-home feature indicates that the NETCONF
server supports initiating a NETCONF over SSH call
home connection to NETCONF clients.";
reference
"RFC YYYY: NETCONF Call Home and RESTCONF Call Home";
}
feature tls-listen { WG Chair: Mahesh Jethanandani
description <mailto:mjethanandani@gmail.com>
"The tls-listen feature indicates that the NETCONF server
supports opening a port to accept NETCONF over TLS
client connections.";
reference
"RFC 5539: Using the NETCONF Protocol over Transport
Layer Security (TLS) with Mutual X.509
Authentication";
}
feature tls-call-home { Editor: Kent Watsen
description <mailto:kwatsen@juniper.net>";
"The tls-call-home feature indicates that the NETCONF
server supports initiating a NETCONF over TLS call
home connection to NETCONF clients.";
reference
"RFC YYYY: NETCONF Call Home and RESTCONF Call Home";
}
feature ssh-x509-certs {
description description
"The ssh-x509-certs feature indicates that the NETCONF server "This module contains a collection of YANG definitions for
supports RFC 6187"; configuring NETCONF servers.
reference
"RFC 6187: X.509v3 Certificates for Secure Shell Authentication";
}
// top-level container (groupings below) Copyright (c) 2014 IETF Trust and the persons identified as
container netconf-server { authors of the code. All rights reserved.
description
"Top-level container for NETCONF server configuration.";
container session-options { // SHOULD WE REMOVE THIS ALTOGETHER? Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC VVVV; see
the RFC itself for full legal notices.";
revision "2015-10-09" {
description description
"NETCONF session options, independent of transport "Initial version";
or connection strategy."; reference
leaf hello-timeout { "RFC VVVV: NETCONF Server and RESTCONF Server Configuration
type uint16; Models";
units "seconds";
default 600;
description
"Specifies the maximum number of seconds that a SSH/TLS
connection may wait for a hello message to be received.
A connection will be dropped if no hello message is
received before this number of seconds elapses. If set
to zero, then the server will wait forever for a hello
message.";
}
} }
container listen { // Features
feature ssh-listen {
description description
"Configures listen behavior"; "The ssh-listen feature indicates that the NETCONF server
if-feature "(ssh-listen or tls-listen)"; supports opening a port to accept NETCONF over SSH
leaf max-sessions { client connections.";
type uint16; reference
default 0; "RFC 6242: Using the NETCONF Protocol over Secure Shell (SSH)";
description }
"Specifies the maximum number of concurrent sessions
that can be active at one time. The value 0 indicates feature ssh-call-home {
that no artificial session limit should be used."; description
} "The ssh-call-home feature indicates that the NETCONF
leaf idle-timeout { server supports initiating a NETCONF over SSH call
type uint16; home connection to NETCONF clients.";
units "seconds"; reference
default 3600; // one hour "RFC YYYY: NETCONF Call Home and RESTCONF Call Home";
}
feature tls-listen {
description
"The tls-listen feature indicates that the NETCONF server
supports opening a port to accept NETCONF over TLS
client connections.";
reference
"RFC 5539: Using the NETCONF Protocol over Transport
Layer Security (TLS) with Mutual X.509
Authentication";
}
feature tls-call-home {
description
"The tls-call-home feature indicates that the NETCONF
server supports initiating a NETCONF over TLS call
home connection to NETCONF clients.";
reference
"RFC YYYY: NETCONF Call Home and RESTCONF Call Home";
}
feature ssh-x509-certs {
description
"The ssh-x509-certs feature indicates that the NETCONF
server supports RFC 6187";
reference
"RFC 6187: X.509v3 Certificates for Secure Shell
Authentication";
}
// top-level container (groupings below)
container netconf-server {
description
"Top-level container for NETCONF server configuration.";
container session-options { // SHOULD WE REMOVE THIS ALTOGETHER?
description description
"Specifies the maximum number of seconds that a NETCONF "NETCONF session options, independent of transport
session may remain idle. A NETCONF session will be dropped or connection strategy.";
if it is idle for an interval longer than this number of leaf hello-timeout {
seconds. If set to zero, then the server will never drop type uint16;
a session because it is idle. Sessions that have a units "seconds";
notification subscription active are never dropped."; default 600;
description
"Specifies the maximum number of seconds that a SSH/TLS
connection may wait for a hello message to be received.
A connection will be dropped if no hello message is
received before this number of seconds elapses. If set
to zero, then the server will wait forever for a hello
message.";
}
} }
list endpoint {
key name; container listen {
if-feature "(ssh-listen or tls-listen)";
description description
"List of endpoints to listen for NETCONF connections on."; "Configures listen behavior";
leaf name { leaf max-sessions {
type string; type uint16;
default 0;
description description
"An arbitrary name for the NETCONF listen endpoint."; "Specifies the maximum number of concurrent sessions
that can be active at one time. The value 0 indicates
that no artificial session limit should be used.";
} }
choice transport { leaf idle-timeout {
mandatory true; type uint16;
units "seconds";
default 3600; // one hour
description description
"Selects between available transports."; "Specifies the maximum number of seconds that a NETCONF
case ssh { session may remain idle. A NETCONF session will be dropped
if-feature ssh-listen; if it is idle for an interval longer than this number of
container ssh { seconds. If set to zero, then the server will never drop
description a session because it is idle. Sessions that have a
"SSH-specific listening configuration for inbound notification subscription active are never dropped.";
connections."; }
uses address-and-port-grouping { list endpoint {
refine port { key name;
default 830; description
"List of endpoints to listen for NETCONF connections on.";
leaf name {
type string;
description
"An arbitrary name for the NETCONF listen endpoint.";
}
choice transport {
mandatory true;
description
"Selects between available transports.";
case ssh {
if-feature ssh-listen;
container ssh {
description
"SSH-specific listening configuration for inbound
connections.";
uses ss:listening-ssh-server-grouping {
refine port {
default 830;
}
} }
} }
uses ss:ssh-server-grouping;
} }
} case tls {
case tls { if-feature tls-listen;
if-feature tls-listen; container tls {
container tls { description
description "TLS-specific listening configuration for inbound
"TLS-specific listening configuration for inbound connections.";
connections."; uses ts:listening-tls-server-grouping {
uses address-and-port-grouping { refine port {
refine port { default 6513;
default 6513; }
augment "client-auth" {
description
"Augments in the cert-to-name structure.";
uses cert-maps-grouping;
}
} }
} }
uses tls-server-grouping;
} }
} }
} }
} }
}
container call-home { container call-home {
if-feature "(ssh-call-home or tls-call-home)"; if-feature "(ssh-call-home or tls-call-home)";
description
"Configures call-home behavior";
list netconf-client {
key name;
description description
"List of NETCONF clients the NETCONF server is to initiate "Configures call-home behavior";
call-home connections to.";
leaf name { list netconf-client {
type string; key name;
description
"An arbitrary name for the remote NETCONF client.";
}
choice transport {
mandatory true;
description description
"Selects between available transports."; "List of NETCONF clients the NETCONF server is to initiate
case ssh { call-home connections to.";
if-feature ssh-call-home; leaf name {
container ssh { type string;
description description
"Specifies SSH-specific call-home transport "An arbitrary name for the remote NETCONF client.";
configuration."; }
uses endpoints-container { choice transport {
refine endpoints/endpoint/port { mandatory true;
default 7777; description
"Selects between available transports.";
case ssh {
if-feature ssh-call-home;
container ssh {
description
"Specifies SSH-specific call-home transport
configuration.";
uses endpoints-container {
refine endpoints/endpoint/port {
default 7777;
}
} }
uses ss:non-listening-ssh-server-grouping;
} }
uses ss:ssh-server-grouping;
} }
} case tls {
case tls { if-feature tls-call-home;
if-feature tls-call-home; container tls {
container tls { description
description "Specifies TLS-specific call-home transport
"Specifies TLS-specific call-home transport configuration.";
configuration."; uses endpoints-container {
uses endpoints-container { refine endpoints/endpoint/port {
refine endpoints/endpoint/port { default 8888;
default 8888; }
}
uses ts:non-listening-tls-server-grouping {
augment "client-auth" {
description
"Augments in the cert-to-name structure.";
uses cert-maps-grouping;
}
} }
} }
uses tls-server-grouping;
} }
} }
} container connection-type {
container connection-type {
description
"Indicates the kind of connection to use.";
choice connection-type {
description description
"Selects between available connection types."; "Indicates the kind of connection to use.";
case persistent-connection { choice connection-type {
container persistent { description
presence true; "Selects between available connection types.";
description case persistent-connection {
"Maintain a persistent connection to the NETCONF container persistent {
client. If the connection goes down, immediately presence true;
start trying to reconnect to it, using the
reconnection strategy.
This connection type minimizes any NETCONF client
to NETCONF server data-transfer delay, albeit at
the expense of holding resources longer.";
leaf idle-timeout {
type uint32;
units "seconds";
default 86400; // one day;
description description
"Specifies the maximum number of seconds that a "Maintain a persistent connection to the NETCONF
a NETCONF session may remain idle. A NETCONF client. If the connection goes down, immediately
session will be dropped if it is idle for an start trying to reconnect to it, using the
interval longer than this number of seconds. reconnection strategy.
If set to zero, then the server will never drop
a session because it is idle. Sessions that This connection type minimizes any NETCONF client
have a notification subscription active are to NETCONF server data-transfer delay, albeit at
never dropped."; the expense of holding resources longer.";
leaf idle-timeout {
type uint32;
units "seconds";
default 86400; // one day;
description
"Specifies the maximum number of seconds that a
a NETCONF session may remain idle. A NETCONF
session will be dropped if it is idle for an
interval longer than this number of seconds.
If set to zero, then the server will never drop
a session because it is idle. Sessions that
have a notification subscription active are
never dropped.";
}
container keep-alives {
description
"Configures the keep-alive policy, to proactively
test the aliveness of the SSH/TLS client. An
unresponsive SSH/TLS client will be dropped after
approximately max-attempts * max-wait seconds.";
reference
"RFC YYYY: NETCONF Call Home and RESTCONF Call
Home, Section 3.1, item S6";
leaf max-wait {
type uint16 {
range "1..max";
}
units seconds;
default 30;
description
"Sets the amount of time in seconds after which
if no data has been received from the SSH/TLS
client, a SSH/TLS-level message will be sent
to test the aliveness of the SSH/TLS client.";
}
leaf max-attempts {
type uint8;
default 3;
description
"Sets the number of maximum number of sequential
keep-alive messages that can fail to obtain a
response from the SSH/TLS client before assuming
the SSH/TLS client is no longer alive.";
}
}
} }
container keep-alives { }
case periodic-connection {
container periodic {
presence true;
description description
"Configures the keep-alive policy, to proactively "Periodically connect to the NETCONF client, so that
test the aliveness of the SSH/TLS client. An the NETCONF client may deliver messages pending for
unresponsive SSH/TLS client will be dropped after the NETCONF server. The NETCONF client is expected
approximately (max-attempts * max-wait) seconds."; to close the connection when it is ready to release
reference it, thus starting the NETCONF server's timer until
"RFC YYYY: NETCONF Call Home and RESTCONF Call Home, next connection.";
Section 3.1, item S6"; leaf idle-timeout {
leaf max-wait { type uint16;
units "seconds";
default 300; // five minutes
description
"Specifies the maximum number of seconds that a
a NETCONF session may remain idle. A NETCONF
session will be dropped if it is idle for an
interval longer than this number of seconds.
If set to zero, then the server will never drop
a session because it is idle. Sessions that
have a notification subscription active are
never dropped.";
}
leaf reconnect_timeout {
type uint16 { type uint16 {
range "1..max"; range "1..max";
} }
units seconds; units minutes;
default 30; default 60;
description
"Sets the amount of time in seconds after which
if no data has been received from the SSH/TLS
client, a SSH/TLS-level message will be sent
to test the aliveness of the SSH/TLS client.";
}
leaf max-attempts {
type uint8;
default 3;
description description
"Sets the number of sequential keep-alive messages "Sets the maximum amount of unconnected time the
that can fail to obtain a response from the SSH/TLS NETCONF server will wait before re-establishing
client before assuming the SSH/TLS client is no a connection to the NETCONF client. The NETCONF
longer alive."; server may initiate a connection before this
time if desired (e.g., to deliver an event
notification message).";
} }
} }
} }
} }
case periodic-connection { }
container periodic { container reconnect-strategy {
presence true; description
description "The reconnection strategy guides how a NETCONF server
"Periodically connect to the NETCONF client, so that reconnects to a NETCONF client, after discovering its
the NETCONF client may deliver messages pending for connection to the client has dropped. The NETCONF
the NETCONF server. The NETCONF client is expected server starts with the specified endpoint and tries
to close the connection when it is ready to release to connect to it max-attempts times before trying the
it, thus starting the NETCONF server's timer until next endpoint in the list (round robin).";
next connection."; leaf start-with {
leaf idle-timeout { type enumeration {
type uint16; enum first-listed {
units "seconds";
default 300; // five minutes
description description
"Specifies the maximum number of seconds that a "Indicates that reconnections should start with
a NETCONF session may remain idle. A NETCONF the first endpoint listed.";
session will be dropped if it is idle for an
interval longer than this number of seconds.
If set to zero, then the server will never drop
a session because it is idle. Sessions that
have a notification subscription active are
never dropped.";
} }
leaf reconnect_timeout { enum last-connected {
type uint16 {
range "1..max";
}
units minutes;
default 60;
description description
"The maximum amount of unconnected time the NETCONF "Indicates that reconnections should start with
server will wait before re-establishing a connection the endpoint last connected to. If no previous
to the NETCONF client. The NETCONF server may connection has ever been established, then the
initiate a connection before this time if desired first endpoint configured is used. NETCONF
(e.g., to deliver a notification)."; servers SHOULD be able to remember the last
endpoint connected to across reboots.";
} }
} }
default first-listed;
description
"Specifies which of the NETCONF client's endpoints the
NETCONF server should start with when trying to connect
to the NETCONF client.";
} }
} leaf max-attempts {
} type uint8 {
container reconnect-strategy { range "1..max";
description
"The reconnection strategy guides how a NETCONF server
reconnects to an NETCONF client, after losing a connection
to it, even if due to a reboot. The NETCONF server starts
with the specified endpoint and tries to connect to it
max-attempts times before trying the next endpoint in the
list (round robin).";
leaf start-with {
type enumeration {
enum first-listed {
description
"Indicates that reconnections should start with
the first endpoint listed.";
}
enum last-connected {
description
"Indicates that reconnections should start with
the endpoint last connected to. If no previous
connection has ever been established, then the
first endpoint configured is used. NETCONF
servers SHOULD be able to remember the last
endpoint connected to across reboots.";
} }
default 3;
description
"Specifies the number times the NETCONF server tries to
connect to a specific endpoint before moving on to the
next endpoint in the list (round robin).";
} }
default first-listed;
description
"Specifies which of the NETCONF client's endpoints the
NETCONF server should start with when trying to connect
to the NETCONF client.";
}
leaf max-attempts {
type uint8 {
range "1..max";
}
default 3;
description
"Specifies the number times the NETCONF server tries to
connect to a specific endpoint before moving on to the
next endpoint in the list (round robin).";
} }
} }
} }
} }
}
grouping tls-server-grouping {
description
"An augmentation of tls-server-grouping, as defined in the
ietf-tls-server module, to add in cert-maps.";
uses ts:tls-server-grouping {
augment "client-auth" {
container cert-maps {
uses x509c2n:cert-to-name;
description
"The cert-maps container is used by a NETCONF server to
map the NETCONF client's presented X.509 certificate to a
NETCONF username. If no matching and valid cert-to-name
list entry can be found, then the NETCONF server MUST
close the connection, and MUST NOT accept NETCONF
messages over it.";
reference
"RFC WWWW: NETCONF over TLS, Section 7";
}
}
}
}
grouping address-and-port-grouping { grouping cert-maps-grouping {
description
"This grouping is used by both the ssh and tls containers
for listen configuration.";
leaf address {
type inet:ip-address;
description
"The IP address of the interface to listen on. The NETCONF
server will listen on all interfaces if no value is
specified.";
}
leaf port {
type inet:port-number;
description description
"The local port number on this interface the NETCONF server "A grouping that defines a container around the
listens on. The NETCONF server will use the IANA-assigned cert-to-name structure defined in RFC 7407.";
well-known port if no value is specified."; container cert-maps {
uses x509c2n:cert-to-name;
description
"The cert-maps container is used by a TLS-based NETCONF
server to map the NETCONF client's presented X.509
certificate to a NETCONF username. If no matching and
valid cert-to-name list entry can be found, then the
NETCONF server MUST close the connection, and MUST NOT
accept NETCONF messages over it.";
reference
"RFC WWWW: NETCONF over TLS, Section 7";
}
} }
}
grouping endpoints-container { grouping endpoints-container {
description
"This grouping is used by both the ssh and tls containers
for call-home configurations.";
container endpoints {
description description
"Container for the list of endpoints."; "This grouping is used by both the ssh and tls containers
list endpoint { for call-home configurations.";
key name; container endpoints {
min-elements 1;
ordered-by user;
description description
"User-ordered list of endpoints for this NETCONF client. "Container for the list of endpoints.";
Defining more than one enables high-availability."; list endpoint {
leaf name { key name;
type string; min-elements 1;
description ordered-by user;
"An arbitrary name for this endpoint.";
}
leaf address {
type inet:host;
mandatory true;
description
"The IP address or hostname of the endpoint. If a
hostname is configured and the DNS resolution results
in more than one IP address, the NETCONF server
will process the IP addresses as if they had been
explicitly configured in place of the hostname.";
}
leaf port {
type inet:port-number;
description description
"The IP port for this endpoint. The NETCONF server will "User-ordered list of endpoints for this NETCONF client.
use the IANA-assigned well-known port if no value is Defining more than one enables high-availability.";
specified."; leaf name {
type string;
description
"An arbitrary name for this endpoint.";
}
leaf address {
type inet:host;
mandatory true;
description
"The IP address or hostname of the endpoint. If a
hostname is configured and the DNS resolution results
in more than one IP address, the NETCONF server
will process the IP addresses as if they had been
explicitly configured in place of the hostname.";
}
leaf port {
type inet:port-number;
description
"The IP port for this endpoint. The NETCONF server will
use the IANA-assigned well-known port if no value is
specified.";
}
} }
} }
} }
} }
} <CODE ENDS>
<CODE ENDS>
A.5. The RESTCONF Server Model 4.5. The RESTCONF Server Model
A.5.1. Tree Diagram The RESTCONF Server model presented in this section supports servers
both listening for connections to accept as well as initiating call-
home connections. This model supports the TLS transport only, as
RESTCONF only supports HTTPS, using the TLS Server groupings
presented in Section 4.3. All private keys and trusted certificates
are held in the keychain model presented in Section 4.1. YANG
feature statements are used to enable implementations to advertise
which parts of the model the RESTCONF server supports.
module: ietf-restconf-server-new 4.5.1. Tree Diagram
+--rw restconf-server
+--rw listen {tls-listen}?
| +--rw max-sessions? uint16
| +--rw endpoint* [name]
| +--rw name string
| +--rw (transport)
| +--:(tls)
| +--rw tls
| +--rw address? inet:ip-address
| +--rw port? inet:port-number
| +--rw certificates
| | +--rw certificate* [name]
| | +--rw name -> /kc:keychain/private-keys/private-key/certificates/certificate/name
| +--rw client-auth
| +--rw trusted-ca-certs? -> /kc:keychain/trusted-certificates/name
| +--rw trusted-client-certs? -> /kc:keychain/trusted-certificates/name
| +--rw cert-maps
| +--rw cert-to-name* [id]
| +--rw id uint32
| +--rw fingerprint x509c2n:tls-fingerprint
| +--rw map-type identityref
| +--rw name string
+--rw call-home {tls-call-home}?
+--rw restconf-client* [name]
+--rw name string
+--rw (transport)
| +--:(tls)
| +--rw tls
| +--rw endpoints
| | +--rw endpoint* [name]
| | +--rw name string
| | +--rw address inet:host
| | +--rw port? inet:port-number
| +--rw certificates
| | +--rw certificate* [name]
| | +--rw name -> /kc:keychain/private-keys/private-key/certificates/certificate/name
| +--rw client-auth
| +--rw trusted-ca-certs? -> /kc:keychain/trusted-certificates/name
| +--rw trusted-client-certs? -> /kc:keychain/trusted-certificates/name
| +--rw cert-maps
| +--rw cert-to-name* [id]
| +--rw id uint32
| +--rw fingerprint x509c2n:tls-fingerprint
| +--rw map-type identityref
| +--rw name string
+--rw connection-type
| +--rw (connection-type)?
| +--:(persistent-connection)
| | +--rw persistent!
| | +--rw keep-alives
| | +--rw max-wait? uint16
| | +--rw max-attempts? uint8
| +--:(periodic-connection)
| +--rw periodic!
| +--rw reconnect-timeout? uint16
+--rw reconnect-strategy
+--rw start-with? enumeration
+--rw max-attempts? uint8
A.5.2. Example Usage The following tree diagram uses line-wrapping in order to comply with
xml2rfc validation. This is annoying as I find that drafts (even txt
drafts) look just fine with long lines - maybe xml2rfc should remove
this warning? - or pyang could have an option to suppress printing
leafref paths?
TBD module: ietf-restconf-server
+--rw restconf-server
+--rw listen {tls-listen}?
| +--rw max-sessions? uint16
| +--rw endpoint* [name]
| +--rw name string
| +--rw (transport)
| +--:(tls) {tls-listen}?
| +--rw tls
| +--rw address? inet:ip-address
| +--rw port inet:port-number
| +--rw certificates
| | +--rw certificate* [name]
| | +--rw name -> /kc:keychain/private-keys/p
rivate-key/certificates/certificate/name
| +--rw client-auth
| +--rw trusted-ca-certs? -> /kc:keychain/t
rusted-certificates/name
| +--rw trusted-client-certs? -> /kc:keychain/t
rusted-certificates/name
| +--rw cert-maps
| +--rw cert-to-name* [id]
| +--rw id uint32
| +--rw fingerprint x509c2n:tls-fingerpr
int
| +--rw map-type identityref
| +--rw name string
+--rw call-home {tls-call-home}?
+--rw restconf-client* [name]
+--rw name string
+--rw (transport)
| +--:(tls) {tls-call-home}?
| +--rw tls
| +--rw endpoints
| | +--rw endpoint* [name]
| | +--rw name string
| | +--rw address inet:host
| | +--rw port? inet:port-number
| +--rw certificates
| | +--rw certificate* [name]
| | +--rw name -> /kc:keychain/private-keys/p
rivate-key/certificates/certificate/name
| +--rw client-auth
| +--rw trusted-ca-certs? -> /kc:keychain/t
rusted-certificates/name
| +--rw trusted-client-certs? -> /kc:keychain/t
rusted-certificates/name
| +--rw cert-maps
| +--rw cert-to-name* [id]
| +--rw id uint32
| +--rw fingerprint x509c2n:tls-fingerpr
int
| +--rw map-type identityref
| +--rw name string
+--rw connection-type
| +--rw (connection-type)?
| +--:(persistent-connection)
| | +--rw persistent!
| | +--rw keep-alives
| | +--rw max-wait? uint16
| | +--rw max-attempts? uint8
| +--:(periodic-connection)
| +--rw periodic!
| +--rw reconnect-timeout? uint16
+--rw reconnect-strategy
+--rw start-with? enumeration
+--rw max-attempts? uint8
A.5.3. YANG Model 4.5.2. Example Usage
Configuring a RESTCONF Server to listen for RESTCONF client
connections, as well as configuring call-home to one RESTCONF client.
This example is consistent with other examples presented in this
document.
<restconf-server
xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf-server">
<!-- listening for TLS (HTTPS) connections -->
<listen>
<endpoint>
<name>netconf/tls</name>
<tls>
<address>11.22.33.44</address>
<certificates>
<certificate>ex-key-sect571r1-cert</certificate>
</certificates>
<client-auth>
<trusted-ca-certs>
deployment-specific-ca-certs
</trusted-ca-certs>
<trusted-client-certs>
explicitly-trusted-client-certs
</trusted-client-certs>
<cert-maps>
<cert-to-name>
<id>1</id>
<fingerprint>11:0A:05:11:00</fingerprint>
<map-type>x509c2n:san-any</map-type>
</cert-to-name>
<cert-to-name>
<id>2</id>
<fingerprint>B3:4F:A1:8C:54</fingerprint>
<map-type>x509c2n:specified</map-type>
<name>scooby-doo</name>
</cert-to-name>
</cert-maps>
</client-auth>
</tls>
</endpoint>
</listen>
<!-- calling home to a RESTCONF client -->
<call-home>
<restconf-client>
<name>config-manager</name>
<tls>
<endpoints>
<endpoint>
<name>east-data-center</name>
<address>22.33.44.55</address>
</endpoint>
<endpoint>
<name>west-data-center</name>
<address>33.44.55.66</address>
</endpoint>
</endpoints>
<certificates>
<certificate>ex-key-sect571r1-cert</certificate>
</certificates>
<client-auth>
<trusted-ca-certs>
deployment-specific-ca-certs
</trusted-ca-certs>
<trusted-client-certs>
explicitly-trusted-client-certs
</trusted-client-certs>
<cert-maps>
<cert-to-name>
<id>1</id>
<fingerprint>11:0A:05:11:00</fingerprint>
<map-type>x509c2n:san-any</map-type>
</cert-to-name>
<cert-to-name>
<id>2</id>
<fingerprint>B3:4F:A1:8C:54</fingerprint>
<map-type>x509c2n:specified</map-type>
<name>scooby-doo</name>
</cert-to-name>
</cert-maps>
</client-auth>
</tls>
<connection-type>
<periodic>
<idle-timeout>300</idle-timeout>
<reconnect-timeout>60</reconnect-timeout>
</periodic>
</connection-type>
<reconnect-strategy>
<start-with>last-connected</start-with>
<max-attempts>3</max-attempts>
</reconnect-strategy>
</restconf-client>
</call-home>
</restconf-server>
4.5.3. YANG Model
This YANG module imports YANG types from [RFC6991] and [RFC7407]. This YANG module imports YANG types from [RFC6991] and [RFC7407].
<CODE BEGINS> file "ietf-restconf-server-new@2015-07-06.yang" <CODE BEGINS> file "ietf-restconf-server@2015-10-09.yang"
module ietf-restconf-server-new { module ietf-restconf-server {
yang-version 1.1; yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-restconf-server-new"; namespace "urn:ietf:params:xml:ns:yang:ietf-restconf-server";
prefix "rcserver"; prefix "rcserver";
import ietf-netconf-acm { //import ietf-netconf-acm {
prefix nacm; // RFC 6536 // prefix nacm; // RFC 6536
} //}
import ietf-inet-types { // RFC 6991 import ietf-inet-types { // RFC 6991
prefix inet; prefix inet;
} }
import ietf-x509-cert-to-name { // RFC 7407 import ietf-x509-cert-to-name { // RFC 7407
prefix x509c2n; prefix x509c2n;
} }
import ietf-tls-server { // RFC VVVV import ietf-tls-server { // RFC VVVV
prefix ts; prefix ts;
revision-date 2015-10-09;
} }
organization organization
"IETF NETCONF (Network Configuration) Working Group"; "IETF NETCONF (Network Configuration) Working Group";
contact contact
"WG Web: <http://tools.ietf.org/wg/netconf/> "WG Web: <http://tools.ietf.org/wg/netconf/>
WG List: <mailto:netconf@ietf.org> WG List: <mailto:netconf@ietf.org>
WG Chair: Mehmet Ersue WG Chair: Mehmet Ersue
<mailto:mehmet.ersue@nsn.com> <mailto:mehmet.ersue@nsn.com>
skipping to change at page 77, line 37 skipping to change at page 52, line 40
Redistribution and use in source and binary forms, with or Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info). (http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC VVVV; see This version of this YANG module is part of RFC VVVV; see
the RFC itself for full legal notices."; the RFC itself for full legal notices.";
revision "2015-07-06" { revision "2015-10-09" {
description description
"Initial version"; "Initial version";
reference reference
"RFC VVVV: NETCONF Server and RESTCONF Server Configuration "RFC VVVV: NETCONF Server and RESTCONF Server Configuration
Models"; Models";
} }
// Features // Features
feature tls-listen { feature tls-listen {
skipping to change at page 78, line 26 skipping to change at page 53, line 28
} }
feature client-cert-auth { feature client-cert-auth {
description description
"The client-cert-auth feature indicates that the RESTCONF "The client-cert-auth feature indicates that the RESTCONF
server supports the ClientCertificate authentication scheme."; server supports the ClientCertificate authentication scheme.";
reference reference
"RFC ZZZZ: Client Authentication over New TLS Connection"; "RFC ZZZZ: Client Authentication over New TLS Connection";
} }
// top-level container (groupings below) // top-level container
container restconf-server { container restconf-server {
description description
"Top-level container for RESTCONF server configuration."; "Top-level container for RESTCONF server configuration.";
container listen { container listen {
if-feature tls-listen;
description description
"Configures listen behavior"; "Configures listen behavior";
if-feature tls-listen;
leaf max-sessions { leaf max-sessions {
type uint16; type uint16;
default 0; // should this be 'max'? default 0; // should this be 'max'?
description description
"Specifies the maximum number of concurrent sessions "Specifies the maximum number of concurrent sessions
that can be active at one time. The value 0 indicates that can be active at one time. The value 0 indicates
that no artificial session limit should be used."; that no artificial session limit should be used.";
} }
list endpoint { list endpoint {
key name; key name;
skipping to change at page 79, line 4 skipping to change at page 54, line 6
that no artificial session limit should be used."; that no artificial session limit should be used.";
} }
list endpoint { list endpoint {
key name; key name;
description description
"List of endpoints to listen for RESTCONF connections on."; "List of endpoints to listen for RESTCONF connections on.";
leaf name { leaf name {
type string; type string;
description description
"An arbitrary name for the RESTCONF listen endpoint."; "An arbitrary name for the RESTCONF listen endpoint.";
} }
choice transport { choice transport {
mandatory true; mandatory true;
description description
"Selects between available transports."; "Selects between available transports.";
case tls { case tls {
if-feature tls-listen;
container tls { container tls {
description description
"TLS-specific listening configuration for inbound "TLS-specific listening configuration for inbound
connections."; connections.";
leaf address { uses ts:listening-tls-server-grouping {
type inet:ip-address; refine port {
description default 443;
"The IP address of the interface to listen on. The }
RESTCONF server will listen on all interfaces if augment "client-auth" {
no value is specified."; description
} "Augments in the cert-to-name structure.";
leaf port { uses cert-maps-grouping;
type inet:port-number; }
default 443;
description
"The port number the RESTCONF server will listen on.";
} }
uses tls-server-grouping;
} }
} }
} }
} }
} }
container call-home { container call-home {
if-feature tls-call-home; if-feature tls-call-home;
description description
"Configures call-home behavior"; "Configures call-home behavior";
skipping to change at page 80, line 4 skipping to change at page 54, line 51
initiate call-home connections to."; initiate call-home connections to.";
leaf name { leaf name {
type string; type string;
description description
"An arbitrary name for the remote RESTCONF client."; "An arbitrary name for the remote RESTCONF client.";
} }
choice transport { choice transport {
mandatory true; mandatory true;
description description
"Selects between TLS and any transports augmented in."; "Selects between TLS and any transports augmented in.";
case tls { case tls {
if-feature tls-call-home;
container tls { container tls {
description description
"Specifies TLS-specific call-home transport "Specifies TLS-specific call-home transport
configuration."; configuration.";
container endpoints { uses endpoints-container {
description refine endpoints/endpoint/port {
"Container for the list of endpoints."; default 9999;
list endpoint { }
key name; }
min-elements 1; uses ts:non-listening-tls-server-grouping {
ordered-by user; augment "client-auth" {
description description
"User-ordered list of endpoints for this RESTCONF "Augments in the cert-to-name structure.";
client. More than one enables high-availability."; uses cert-maps-grouping;
leaf name {
type string;
description
"An arbitrary name for this endpoint.";
}
leaf address {
type inet:host;
mandatory true;