This book is a collection of RFCs and Internet-Drafts related to specific working group. The RFC and Internet-Drafts files are normally stored in plain ascii text format and they are converted to html suitable for eBook use by automatic scripts. Those scripts try to detect headers, pictures, lists, references etc and create special html for each of those. For text paragraphs those scripts remove indentation and hard linebreaks and makes text paragraphs as normal text so font size of the eBook can be adjusted at will and features like text-to-speech work.
As this conversion is completely automatic there might be errors in the converted files. I have tried to fix the issues when I find them, but sometimes fixing issue in one RFC cause problems in others, so not all errors can be easily fixed, this is especially true for very old RFCs which do not follow the formatting specifications. If you notice errors in the formatting please send email to the <kivinen+rfc-ebook@iki.fi> and describle the problem. Please, remember to include the RFC number and the version number of the eBook file (found from the cover page).
As the collection of RFCs is quite large there has been some issues with the conversion to kindle, and some features do not seem to work properly when full set of RFCs is used. Because of this some work-arounds have been made to make the eBook still usable. If the kindle software gets updated some of those work-arounds might be removed. For more information about those see the Conversion section.
The primary output format of the scripts is the .mobi format used in the kindle, and I have been using Kindle 3 as my primary testing device, so if other reader devices are used, there might be more issues. The automatic tools also create the .ePub file, which can be used on platforms which do not support .mobi format. There is program called mobipocket for reading .mobi files, and that program is available for wide range of devices including PalmOS, Symbian, PC, Windows Mobile, Blackberry etc, so also those devices can be used in addition to normal eBook readers.
In this section I will concentrate mostly on how to use this on Kindle 3. This eBook contains 5 main parts:
The cover page includes the date when this eBook was created (i.e. eBook version).
The conversion section includes technical information how this eBook was created and some known issues etc.
There are four main ways to navigate through the book in addition to normal page up and down.
Fastest way to go to specific RFC or Internet-Draft is to press menu button on the Kindle 3, and then select Index from the menu. This will give you the automatic index of the contents of the this file. This allows quick access to the RFC by just typing the numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y will jump you to the RFC 5996 and then you can use arrow down to select RFC and hit enter to go there. For internet draft start typing the draft name.
Another option is to use the RFC Index in the beginning of the file (You can get to there by either pressing menu, selecting Index and then clicking on the Index in the beginning of the index, or by pressing menu, selecting Go to... and then selecting Table of Contents).
Third option is to use left and right arrows to navigate the next and previous RFC/Internet-Drafts.
The fourth way to navigate inside the book is to use the links inside the files. The RFC Index has direct links to every 100th RFC. Each file contains links to back 5, forward 5, next and previous rfc. Also any reference inside the documents pointing to other RFCs gets you directly there. Some of the links inside RFC moves you inside the RFC, i.e. clicking link on the table of contents inside the RFC moves you to that section etc. Also references inside the RFC will move you to the refences section etc.
draft-carpenter-gendispatch-draft-adoption-00 - Process for Working Group Adopti
Network Working Group
Internet-Draft
Intended status: Best Current Practice
Expires: December 2, 2020
B. Carpenter
Univ. of Auckland
F. Gont
SI6 Networks
M. Richardson
Sandelman Software Works
May 31, 2020
draft-adoption-00
IETF working groups often formally adopt drafts. This document specifies minimum requirements for this process, thereby extending RFC 2418. It also describes how an adopted draft may be withdrawn from the working group process.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on December 2, 2020.
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
According to [RFC2418], the Internet-Drafts (I-D) mechanism is a "resource for posting and disseminating in-process copies of working group documents." However, most I-Ds start as individual contributions and only become working group documents by a WG decision generally referred to as "adoption." As noted in [RFC7221], this process was not previously documented as a formal step in the IETF WG process. This has sometimes led to confusion about the significance of such adoption and about how it fits into the IETF standards process. The present document is intended to define a few formal rules about adoption to reduce such confusion.
After a draft has been formally adopted by a WG, its original authors no longer have formal change control of the text. In addition to the normal consequence of posting a draft, i.e., that it becomes an IETF Contribution under [RFC5378], all future substantive changes to the draft require WG consensus and are no longer at the authors' sole discretion.
As a practical matter, the original authors usually continue to edit the document and make routine editorial decisions, but substantive changes must be referred to the WG and require WG rough consensus, consistently with [RFC2418]. It is also possible that new authors or editors will join the draft, or that previous authors may withdraw. Adoption represents a commitment that the WG will spend time and effort on the draft, but it does not guarantee that the draft will reach WG consensus and be submitted to the IESG for publication as an RFC.
A WG Adoption Call of an I-D is not a required step of the IETF standards process. The WG chairs decide what documents belong in the WG, and can create new documents by fiat. A simple situation would be if a WG decides that an existing document should be split into two pieces: There is no reason to adopt each piece, that is needless bureaucracy. A WG that decides to create a design team to solve a problem has implicitely agreed to adopt the result. To not adopt the result is to say that the results of the WG mandated design team does not deserve first class agenda time. Such a design team would have been created, for instance, when a WG can not decide between two competing individual drafts and decides to merge them.
It is legitimate for a draft to be submitted to the IESG as described in [RFC2026] without a formal adoption by a WG.
If WG Chairs choose to consult the WG about adopting a document, this is the recommended process. The WG Chairs should also consider the additional guidelines in [RFC7221].
o Any participant may request the adoption of a draft, after there has been a period of technical discussion of the draft in the relevant WG.
o WG Chairs have discretion about when to issue an WG call for adoption, but they should do so regardless of their own opinions, when the WG discussion shows that there is clear interest in the draft in question.
o A WG Chair or WG Secretary must send a formal WG call for adoption of a draft to the WG mailing list with at least two weeks time to respond.
o This proposal should remind all participants, not just the authors, of their obligation to disclose relevant intellectual property rights (IPR) under [RFC8179].
o Participants should consider the following aspects when responding to the WG call for adoption:
* The draft must fit within the current WG charter, or would do so with a simple modification to the charter.
* The purpose of the draft should be clear.
* The proposal should be useful.
* The quality of writing should be sufficient for document to serve as the basis further work.
* There should be no strong technical objections.
* Any IPR disclosures should be acceptable.
* The work should not be in conflict with work elsewhere in the IETF.
o An informal summary of these criteria is: Is this a problem the WG wants to solve in a way approximately as described in the draft?
o After this period, a WG Chair must, in a timely fashion, consider the comments and discussion in order to judge whether there is rough consensus to adopt the draft, and whether there is enough interest in the work that its completion is likely.
o If there is such consensus, this WG Chair will announce the result and, if positive, will request the authors to post a new version using an appropriate naming convention.
o This whole process is subject to the appeals process of [RFC2026].
It sometimes happens that an adopted draft does not reach WG consensus to be submitted to the IESG for publication as an RFC due to lack of interest, lack of effort, or lack of consensus. In such a case, it may be desirable for the WG to formally withdraw the WG draft, such that it is explicitly removed from the WG's agenda and returned to the authors' control.
The withdrawal of WG document should be the result of an explicit decision by the relevant WG, and should follow the following recommendations.
o Upon evidence that progress on a WG draft has been stalled for a considerable period of time, a WG chair should evaluate the reasons of the apparent lack of progress. Such reasons may may include lack of interest, lack of effort, or lack of consensus.
o When progress on a document has been stalled for a considerable period of time, a WG chair, in consultation with the WG draft
authors and editors, should attempt to resume progress by taking appropriate actions that will normally depend on the nature of the lack of progress. For example, a WG draft that has been stalled due to apparent lack of interest may benefit from a call for a number of volunters to produce detailed reviews of the WG draft. Similarly, a WG draft that has been stalled due to lack of effort by its authors/editors may benefit from the incorporation of new WG draft editors or the replacement of some of the existing ones.
o If after succesive failed attempts to make progress on a WG draft its completion remains unlikely, the WG Chairs may, at their own discretion, conclude that it is time for the WG to consider the formal withdrawal of the WG draft.
o In such case, a WG Chair or WG Secretary must send a formal WG consensus call for withdrawal of the WG draft to the WG mailing list with at least two weeks time to respond, explaining the events that have triggered the aforementioned consensus call.
o After this period, a WG Chair must, in a timely fashion, consider the comments and discussion in order to judge whether there is any concrete evidence that completion of the work may now be feasible, or whether completion of the work remains unlikely.
o If further progress on the document remains unlikely, the WG Chair will announce the result of the consensus call and the formal withdrawal of the WG document. This will result in the document being removed from the WG's agenda and returned to the authors' control.
o This whole process is subject to the appeals process of [RFC2026].
This document makes no request of IANA.
This document should not affect the security of the Internet.
Useful comments were received from [TBD] ...
[RFC2026]
Bradner, S., "The Internet Standards Process -- Revision 3", BCP 9, RFC 2026, DOI 10.17487/RFC2026, October 1996, <https://www.rfc-editor.org/info/rfc2026>.
[RFC2418]
Bradner, S., "IETF Working Group Guidelines and Procedures", BCP 25, RFC 2418, DOI 10.17487/RFC2418, September 1998, <https://www.rfc-editor.org/info/rfc2418>.
[RFC5378]
Bradner, S., Ed. and J. Contreras, Ed., "Rights Contributors Provide to the IETF Trust", BCP 78, RFC 5378, DOI 10.17487/RFC5378, November 2008, <https://www.rfc-editor.org/info/rfc5378>.
[RFC8179]
Bradner, S. and J. Contreras, "Intellectual Property Rights in IETF Technology", BCP 79, RFC 8179, DOI 10.17487/RFC8179, May 2017, <https://www.rfc-editor.org/info/rfc8179>.
[RFC7221]
Farrel, A. and D. Crocker, Ed., "Handling of Internet- Drafts by IETF Working Groups", RFC 7221, DOI 10.17487/RFC7221, April 2014, <https://www.rfc-editor.org/info/rfc7221>.
o Original version
Authors' Addresses
Email: brian.e.carpenter@gmail.com
draft-duke-shmoo-virtual-hum-00 - Specification for a virtual humming tool
SHMOO
Internet-Draft
Intended status: Informational
Expires: 9 January 2021
M. Duke
F5 Networks, Inc
8 July 2020
draft-duke-shmoo-virtual-hum-00
This is the specification for a virtual humming tool to emulate as closely as possible the audible hums used in-person meetings to help judge consensus. This specification is based on feedback provided in the survey about virtual humming as well as lived experience with in- person hums.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on 9 January 2021.
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/ license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This is the specification for a virtual humming tool to emulate as closely as possible the audible hums used in-person meetings to help judge consensus. This specification is based on feedback provided in the survey [SURVEY] about virtual humming, as well as lived experience with in-person hums. This note does not consider whether a better mechanism can be developed for judging consensus in online meetings rather than replicating an in-person hum.
This specification aims to preserve the following attributes of in- person humming:
1. Participants can hum at different intensities.
2. A hum is only ever about one view, such as "agree" or "disagree", not both. There is no way of differentiating between people humming at the same time for different things.
3. Hums often come in sets of two, but not always.
4. Participants can hear the overall hum, but the identification of the hum of any individual is unintentional and not to be encouraged.
5. The chair will generally assess the overall hum relative to the number of people in the room.
6. While the intensity of the overall hum is theoretically on a continuous scale, in practice Chairs only recognise a limited number of intensities of overall hum.
7. The overall loudness of a hum is governed by the physics of sound, most closely mapped to that of simple musical instruments [VIOLINS].
8. It gets increasingly difficult to differentiate between hums as the number of people humming increases, with a practical limit reached at some point.
9. The larger the number of participants in a session, the more likely it is that there will be some who do not understand the subject matter well enough to participate in a hum.
This specification is intended to be feature complete, which means that what should be implemented is only what is explicitly stated here and nothing else.
* There is only one type of hum
* Only one hum can be open at any one time in a session.
* A session chair can open a hum.
* A session chair can open a hum at any time during a session, except when a hum is already open.
* A session chair can open multiple hums per session.
* A hum is automatically closed 20 seconds after it is open.
* When a hum is open, each participant in the session, except the chairs, may take part in the hum through the following mechanism: 1. Each session participant is presented with the following options from which they can select. No option is selected as a default. 1. "Soft (single)" 2. "Loud (double)" 2. Selection of an option requires a confirmation action and only takes effect when confirmed. 3. Once an option has been chosen and confirmed then it cannot be changed.
* When a participant selects and confirms any option, they are considered to have hummed.
* If a participant joins the session during the hum then they can take part.
* If a participant leaves the session during the hum, they are considered to have hummed and their hum is still used for data calculation.
* A timer is shown during the hum to all participants and chairs.
* When a hum is closed a score **_s_ calculated as the sum of: 1. 1 for each Soft hum 2. 2 for each Loud hum
* A hum indicator is then displayed as follows depending on the value of **_s_ and the following buckets:
1. **_s_ <= 2: niente
2. **_s_ > 2 and **_s_ <= 10: pianissimo
3. **_s_ > 10 and **_s_ <= 26: piano
4. **_s_ > 26 and **_s_ <= 58: forte
5. **_s_ > 58: fortissimo
* The hum indicator is displayed to all MeetEcho participants, not just the chairs.
* When a new hum is opened the indicator from the previous hum is blanked out, ready to be replaced with a new indicator when the hum closes.
* The choice of buckets for **_s_ uses a simple formula where the size of the bucket doubles each time, which equates to exponential growth in the bucket size. This is roughly equivalent to the logarithmic formulae in [VIOLINS] used to calculate the increase in loudness from one violin to two violins playing the same note.
* The names of the hum indicators are taken from loudness marks used in musical notation.
* Some participants will not be allowed to hum contractually, but this will not need to be enforced by the system.
* The way in which the options are presented and selected and the way in which the hum indicator is selected is left to the implementer. However, the text for each option should appear as above.
* The results display needs to show all the possible results (niente, pianissimo, piano, forte, fortissimo) in some form of ordered view with an indicator as to which end is the quietest and which the loudest, with the appropriate result highlighted.
A number of alternative approaches were considered and rejected as set out below.
A single-level of hum was considered but rejected on the basis that it took the specification too close to voting and was not a match to an in-person hum.
More levels of hum were considered but rejected as it was felt that two levels was the best overall match to an in-person hum.
Consideration was given to separating the idea of choosing not to hum and not being informed enough to participate. When we ceased normalizing the result for the number of attendees, this became irrelevant.
Consideration was given to using a simple formula to calculate the result, such as using the score not the result, and rejected as it was felt that a logarithmic formula was a closer match to an in- person hum.
Consideration was given to directly using the logarithmic formulae in [VIOLINS] used to calculate the increase in loudness from one violin to two violins playing the same note, which would have calculated an approximate decibel level for each hum. Each hum indicator would then represent the same number of decibels, and so produce a similar effect to the chosen specification. This was rejected because it would either produce buckets that were too small and so the top bucket would be reached too quickly, or buckets that were too large giving the inverse problem.
An essentially continuous color-based indicator used in place of buckets, would better match the continuous nature of sound and further divorce the output from the absolute numbers of people humming. However, this would produce higher-precision results than are possible with human ears in a room.
Meetecho participation is restricted to people who have datatracker accounts, providing some assurance of identity. Potential attacks against this tool will either subvert Meetecho admission control, or involve multiple datatracker registrations (and Meetecho logins) to amplify the voice of a single individual.
The integrity of this tool is dependent on the integrity of the registration and fee waiver processes. In particular, they must weed out duplicate registrations, bots, and so on.
This document has no IANA actions.
[SURVEY]
"IETF 107 Survey", 2020, <https://www.ietf.org/media/documents/survey-planning- possible-online-meetings-responses.pdf>.
[VIOLINS]
"Acoustics FAQ", 2015, <https://newt.phys.unsw.edu.au/jw/ musFAQ.html#extraviolin>.
Alissa Cooper, Jay Daley, Roman Danyliw, Colin Perkins, Alvaro Retana, and Robert Wilton made significant contributions to this document. Benjamin Kaduk, Erik Kline, Warren Kumari, and Barry Leiba also provided helpful feedback.
Author's Address
Email: martin.h.duke@gmail.com
draft-ietf-git-github-wg-configuration-07 - Working Group GitHub Administration
GIT Working Group
Internet-Draft
Intended status: Informational
Expires: October 15, 2020
A. Cooper
Cisco
P. Hoffman
ICANN
April 13, 2020
draft-ietf-git-github-wg-configuration-07
The use of GitHub in IETF working group processes is increasing. This document describes uses and conventions for working groups which are considering starting to use GitHub. It does not mandate any processes, and does not require changes to the processes used by current and future working groups not using GitHub.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on October 15, 2020.
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Many IETF working groups and participants make use of GitHub in different ways as part of their work on IETF documents. Some others are interested in having their working groups use GitHub to facilitate the development of working group documents, but they are unfamiliar with how to get started or they are unclear about which conventions to follow. Some other working groups use or plan to use other code repository services such as GitLab and Bitbucket, which have different properties than GitHub.
This document specifies a set of administrative processes and conventions for IETF working groups to use if they choose as a working group to use GitHub to facilitate their work. The specifications in this document are not directed at working groups or individuals that are already using GitHub to do IETF work. Practices vary among existing working groups and some of them are not consistent with the conventions proposed here: that is fine. The goal of the specifications in this document is not to require uniformity in current practice, but to help working groups get started using GitHub in a reviewed and validated way if desired.
This section specifies an administrative process and conventions to support the creation and management of GitHub organizations for working groups and single-document repositories in a uniform way. The steps may be done manually by the IETF Secretariat or they may be automated. See <https://github.com/richsalz/ietf-gh-scripts> and <https://github.com/martinthomson/i-d-template> for working examples of automation that is in use in some working groups.
In this document the question of whether processes should be manual or automated is deliberately left unspecified, since these are implementation details that the IETF Secretariat and Tools Team will address.
Most of the conventions below are drawn from [I-D.ietf-git-using-github].
This document specifies that there be a facility in the IETF Datatracker (<https://datatracker.ietf.org/>) interface to allow an area director or working group chair to request the creation of a GitHub organization for a particular working group. Ideally, this facility would appear both as part of the working group chartering UI as well as the working group page UI.
When an area director or working group chair makes a request to create a GitHub organization, the following process would be initiated:
1. Create a GitHub organization for the working group.
2. Name the organization as ietf-wg-<wgname>
3. Initialize the organization by designating the IETF Secretariat and the area directors in the working group's area as owners. If the responsible AD for the working group is from another area, that AD will be an owner as well.
4. Initialize the organization with a team that has administrator access. This team will consist of the working group chairs and working group secretary, if one exists.
After the organization is created, the URL for the organization would be added to the working group's page in the Datatracker.
Steps 3 and 4 above imply that the GitHub identities of the organization owners and administrators are known. Recording GitHub identities in the Datatracker (see <https://trac.tools.ietf.org/tools/ietfdb/ticket/2548>) would facilitate this. The person requesting the organization would need to be notified if the GitHub identities of any of the people meant to be owners or administrators were not available.
If a working group already has an organization, it would be useful to be able to make it have the same management as one would get with going through the steps in Section 2.1. That is, it would be good to be able to run steps 3 and 4 from Section 2.1 so that the rest of the activities in this section, such as personnel changes, work the same way as for organizations that were created as specified herein.
When there are personnel changes in the area or the working group, those changes would be reflected in the GitHub organization. There should be an ability in the Datatracker to specify that there were personnel changes.
When a working group is closed, the team with administrative access would be removed and the owner list would be returned to the Secretariat and current ADs at the time of closing. The organization summary and the repositories within the organization would be updated to indicate that they are no longer under development. Later, the owner list could become just the Secretariat, or might include others chosen by the Secretariat or the IESG.
There are many different scenarios and configurations where it might be useful to have automation or established administrative conventions for repositories within WG organizations, such as:
o Creating a new repository for an individual draft (at the discretion of the WG chair);
o Creating a new repository for an already-adopted working group draft;
o Migrating an existing document repository into the WG organization; and
o Creating a new repository that contains multiple drafts.
As an incremental step, this document specifies that there be a facility in the Datatracker interface to allow an administrator of an ietf-wg-<wgname> organization to request the creation of a new repository within that organization for a single document. The document authors would be identified as collaborators. The repository name would be the draft name. Ideally, the repository would be configured with a skeleton draft file, default CONTRIBUTING, LICENSE, and README files, and continuous integration support, in the vein of <https://github.com/martinthomson/i-d-template>. Performing this step would automatically inform the IETF Secretariat that this repository should be backed up as described in Section 3.2.
The IETF Datatracker should allow users to add links to repositories (for GitHub and other repository services) on working group, document, and user pages. At the time of this writing this feature was under development.
[I-D.ietf-git-using-github] contains discussion of the different possible ways that a working group can use GitHub and the large number of decisions associated with doing so. This section specifies a basic set of administrative policies for working groups to follow and the administrative support needed to carry out those policies.
At a minimum, every repository created in a working group organization needs to incorporate into its CONTRIBUTING file the boilerplate text at <https://trustee.ietf.org/license-for-open- source-repositories.html> from the IETF license file for open source repositories. The CONTRIBUTING file can contain other information as well (see <https://github.com/ietf/repo-files/tree/master/ contributing-samples> for examples).
It would be useful if the user data in the Datatracker could list (at a minimum) the GitHub account of the user so that their contributions could be tracked more easily.
Some working groups choose to have more than one draft in a repository, particularly for drafts that are tightly linked with significant cross-references. In such a case, the README for the repository needs to say that clearly so that a participant understands that changes might be made to multiple drafts at once.
IETF working group mailing lists are automatically backed up by the IETF Secretariat, and the archives are publicly available. All official interactions in a WG must be archived.
Working group GitHub content needs to also be backed up and publicly archived. This document specifies using the git protocol [git-protocol] itself for both of these tasks.
Every IETF working group repository on GitHub will have a mirror repository of the same name on a server maintained by the IETF Secretariat. Every hour, a service will use the "git fetch" command on every GitHub repository that is being tracked. The mirror repository will allow anyone to read the repository.
Note that this system will not back up GitHub issues or pull requests. These should be backed up as well; the GitHub API allows for this. The IETF Secretariat should back up those at the same time as it is backing up the GitHub repositories.
The steps in Section 2.5 inform the IETF Secretariat which repositories should be backed up. Working group chairs and area directors should also be able to request that the IETF Secretariat back up additional repositories that are related to IETF working groups.
An attacker who can change the contents of Internet Drafts, particularly late in a working group's process, can possibly cause unnoticed changes in protocols that are eventually adopted.
There is a risk of data loss due to centralization of data in one service. This is recognized, and mitigated by the plan described in Section 3.2.
This document has no IANA actions.
[git-protocol]
"Git on the Server - The Protocols", n.d., <https://git- scm.com/book/en/v2/ Git-on-the-Server-The-Protocols#The-Git-Protocol>.
[I-D.ietf-git-using-github]
Thomson, M. and B. Stark, "Working Group GitHub Usage Guidance", draft-ietf-git-using-github-06 (work in progress), March 2020.
Authors' Addresses
Email: alcoop@cisco.com
Email: paul.hoffman@icann.org
draft-ietf-git-using-github-06 - Working Group GitHub Usage Guidance
Network
Internet-Draft
Intended status: Informational
Expires: 20 September 2020
M. Thomson
Mozilla
B. Stark
AT&T
19 March 2020
draft-ietf-git-using-github-06
This document provides a set of guidelines for Working Groups that choose to use GitHub for their work.
Note to Readers
Discussion of this document takes place on the GitHub@ietf mailing list (ietf-and-github@ietf.org), which is archived at https://mailarchive.ietf.org/arch/search?email_list=ietf-and-github.
Source for this draft and an issue tracker can be found at https://github.com/ietf-gitwg/using-github.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on 20 September 2020.
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/ license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
The IETF has an open and transparent process for developing standards. The use of GitHub (https://github.com/) or similar tools, when used as part of this process, can have several objectives. GitHub provides tools that can be helpful in editing documents. Use of this service has been found to reduce the time that a Working Group needs to produce documents and to improve the quality of the final result.
The use of version control improves traceability and visibility of changes. Issue tracking can be used to manage open issues and provide a record of their resolution. Pull requests allow for better engagement on technical and editorial changes, and encourage contributions from a larger set of contributors. Using GitHub can also broaden the community of contributors for a specification.
The main purpose of this document is providing guidelines for how a Working Group might integrate the capabilities provided by GitHub into their processes for developing Internet-Drafts. Whether to use GitHub and whether to adopt these practices is left to the discretion of the Working Group.
This document is meant as a supplement to existing Working Group practices. It provides guidance to Working Group chairs and participants on how they can best use GitHub within the framework established by RFC 2418 [RFC2418]. This document aims to establish norms that reduce the variation in usage patterns between different Working Groups and to help avoid issues that have been encountered in the past.
A companion document, [GH-CONFIG], describes administrative processes that support the practices described in this document.
Although the operation of IRTF Research Groups can be similar in function to Working Groups, this document only directly addresses the needs of Working Groups. However, other groups may draw inspiration for GitHub use from the contents herein.
Version control systems are a critical component of software engineering and are also quite useful for document editing.
Git (https://git-scm.com/) is a distributed version control system that can operate without a central service. Each instance of a repository contains a number of revisions. Each revision stores the complete state of a set of files. Users are able to create new revisions in their copy of a repository and share revisions between copies of repositories.
GitHub is a service operated at https://github.com/. GitHub provides centralized storage for git repositories. GitHub is freely accessible on the open Internet.
GitHub provides a simplified and integrated interface to git, and also provides basic user management, an issue tracker, associated wikis, project hosting, and other features.
There are a large number of projects at GitHub and a very large community of contributors. One way in which some IETF Working Groups have benefited from use of the service is through increased numbers of reviews and associated issues, along with other improvements that come from facilitating participation by a broader community.
Git is not the only version control system available, nor is GitHub the only possible choice for hosting. There are other services that host revision control repositories and provide similar additional features to GitHub. For instance, BitBucket (https://bitbucket.org/) and GitLab (https://about.gitlab.com/) provide similar feature sets. In addition to a hosted service, software for custom installations exists.
This document concentrates primarily on GitHub as it has a large and active community of contributors. As a result, some content might not be applicable to other similar services. A Working Group that decides to adopt an alternative tool or service can still benefit from the general guidance in this document.
This document aims to describe how a Working Group might best apply GitHub to their work. The intent is to allow each Working Group considerable flexibility in how they use GitHub.
This document requires that policies for use of GitHub are agreed and clearly communicated within the Working Group (see Section 2). The remainder of the document contains guidelines and advice on how to construct a workable policy.
The requirements here apply to the case where a Working Group decides to use GitHub as a primary means of interaction. Individuals can set their own policies when using GitHub for managing their own drafts, or for managing drafts that they edit on behalf of a Working Group that has not explicitly adopted GitHub.
For both sets of users, this document aims to provide some amount of advice on practices that have been effective.
This document only aims to address use of GitHub in developing documents. A Working Group could choose to use the tool to aid in managing their charter or session materials such as agendas, minutes, and presentations. Though the advice here might apply more broadly, using GitHub to manage other material is out of scope for this document.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
This document uses a lot of terms related to git and GitHub; see [GLOSSARY] for information on these terms.
The following administrative rules provide the necessary oversight and transparency.
Organizations are a way of forming groups of contributors on GitHub. The Working Group SHOULD create a new organization for its work. A Working Group organization SHOULD be named consistently so that it can be found. For instance, the name could be ietf-wg-<wgname>, as recommended in [GH-CONFIG].
A single organization SHOULD NOT be used for all IETF activity, or all activity within an area. Large organizations create too much overhead for general management tasks.
GitHub requires that each organization have at least one owner. The owners for a Working Group repository MUST include responsible Area Directors and the IETF Secretariat. Working Group chairs SHOULD also be included as owners. Area Directors MAY also designate a delegate that becomes an owner, such as another Area Director from the same area. An organization MUST have at least 2 owners.
Within an organization, members can be grouped into teams. A team with "Admin" access to repositories SHOULD be created for the Working Group Chairs and any Working Group Secretary.
Details about creating organizations adhering to these guidelines can be found in [GH-CONFIG].
Each Working Group MAY set its own policy as to whether and how it uses GitHub. It is important that occasional participants in the WG and others accustomed to IETF tools be able to determine this and easily find the policy and GitHub organization.
A simple example of how to do this is to include a link to the GitHub organization on the WG Charter page in the datatracker. Similarly, if there are additional resources, such as mailing lists, links to those resources could also be added.
Repositories MUST include a copy of or reference to the policy that applies to managing any documents they contain. Updating the README or CONTRIBUTING file in the repository with details of the process ensures that the process is recorded in a stable location other than the mailing list archive. This also makes Working Group policies available to casual contributors who might only interact with the GitHub repository.
GitHub prominently links to the CONTRIBUTING file on certain pages. This file SHOULD be used in preference to the README for information that new contributors need. The README SHOULD contain a link to the CONTRIBUTING file.
In addition to Working Group policies, notices on repositories MUST include citations for the IETF Note Well (https://www.ietf.org/about/ note-well/).
Working Group Chairs are responsible for determining how to best accomplish the charter objectives in an open and transparent fashion. The Working Group Chairs are responsible for determining if there is interest in using GitHub and making a consensus call to determine if the proposed policy and use is acceptable.
Chairs SHOULD involve Area Directors in any decision to use GitHub, especially where substantive discussion of issues is permitted as described in Section 5.3.
Working Group Chairs decide what GitHub features the Working Group will rely upon. Section 4 contains a more thorough discussion on the different features that can be used.
Working Group Chairs who decide to use GitHub MUST inform the Working Group of their decision on the Working Group mailing list. An email detailing how the Working Group intends to use GitHub is sufficient, though it might be helpful to occasionally remind new contributors of these guidelines.
Working Group Chairs are responsible for ensuring that any policy they adopt is enforced and maintained.
The set of GitHub features (Section 4) that the Working Group relies upon need to be clearly documented in policies. This document provides some guidance on potential policies and how those might be applied.
Features that the Working Group does not rely upon can be made available to document editors. Editors are then able to use these features for their own purposes. For example, though the Working Group might not formally use issues to track items that require further discussion in order to reach consensus, keeping the issue tracker available to editors can be valuable.
Working Group policies need to be set with the goal of improving transparency, participation, and ultimately the quality of documents. At times, it might be appropriate to impose some limitations on what document editors are able to do in order to serve these goals. Chairs are encouraged to periodically consult with document editors to ensure that policies are effective.
A document editor can still use GitHub independently for documents that they edit, even if the Working Group does not expressly choose to use GitHub. Any such public repository MUST follow the IETF Note Well and bear notices; see Section 2.2. This recognizes that editors have traditionally chosen their own methods for managing the documents they edit but preserves the need for contributors to understand their obligations with respect to IETF processes.
Work done in GitHub has no special status. The output of any activity using GitHub needs to be taken to the Working Group and is subject to approval, rejection, or modification by the Working Group as with any other input.
New repositories can be created within the Working Group organization at the discretion of the chairs. Chairs could decide to only create new repositories for adopted Working Group items, or they might create repositories for individual documents on request.
Maintaining private repositories for Working Group products is not recommended without specific cause. For instance, a document that details a security vulnerability might be kept private prior to its initial publication as an Internet-Draft. Once an Internet-Draft is published, repositories for Working Group documents MUST be made public.
The adoption status of any document MUST be clear from the contents of the repository. This can be achieved by having the name of the document reflect status (that is, draft-ietf-<wgname>-... indicates that the document was adopted), or through a prominent notice (such as in the README).
Experience has shown that maintaining separate repositories for independent documents is most manageable. This allows the work in that repository to be focused on a single item.
Closely related documents, such as those that together address a single milestone, might be placed in a single repository. This allows editors to more easily manage changes and issues that affect multiple documents.
Maintaining multiple documents in the same repository can add overhead that negatively affects individual documents. For instance, issues might require additional markings to identify the document that they affect. Also, because editors all have write access to the repository, managing the set of people with write access to a larger repository is more difficult (Section 3.3).
Working Group chairs MUST give document editors write access to document repositories. This can be done by creating teams with write access and allocating editors to those teams, or by making editors collaborators on the repository.
Working Group chairs MAY also grant other individuals write access for other reasons, such as maintaining supporting code or build configurations. Working Group chairs, as administrators or owners of the organization might also have write access to repositories. Users other than document editors, including chairs, SHOULD NOT write to Working Group documents without prior coordination with document editors.
A Working Group MAY create a team for regular contributors that is only given read access to a repository. This does not confer additional privileges on these contributors, it instead allows for issues and pull requests to be assigned to those people. This can be used to manage the assignment of editorial or review tasks to individuals outside of the editor team.
In addition to the canonical XML format [RFC7991], document editors might choose to use a different input form for editing documents, such as Markdown. Markdown-based formats are more accessible for new contributors, though ultimately decisions about format are left to document editors.
Formats that are not text-based SHOULD NOT be used, as these are ill- disposed to the sorts of interaction that revision control enables.
Contributions to documents come in many forms. GitHub provides a range of options in addition to email. Input on GitHub can take the form of new issues and pull requests, comments on issues and pull requests, and comments on commits.
The GitHub issue tracker can be an effective way of managing the set of open issues on a document. Issues - both open and closed - can be a useful way of recording decisions made by a Working Group.
Issues can be given arbitrary labels, assigned to contributors, and assembled into milestones. The issue tracker is integrated into the repository; an issue can be closed using a special marker in a commit message.
When deciding to use GitHub, Working Group Chairs MUST decide how the GitHub issue tracker is used. Use of the issue tracker could be limited to recording the existence of issues, or it might be used as the venue for substantial technical discussion between contributors.
A Working Group policy MAY require that all substantive changes be tracked using issues. Suggested policies for the use of the GitHub issue tracker are the primary subject of Section 5.
A system of labeling issues can be effective in managing issues. For instance, marking substantive issues separately from editorial can be helpful at guiding discussion. Using labels can also be helpful in identifying issues for which consensus has been achieved, but that require editors to integrate the changes into a document.
Labels can be used to identify particular categories of issues or to mark specific issues for discussion at an upcoming session.
Chairs communicate any process that specifically relates to the use of labels to the Working Group. This includes the semantics of labels, and who can apply and remove these labels. Section 5.4 describes some basic strategies that might be adopted to manage decision-making processes.
Editors have write access to repositories, which also allows them to close issues. The user that opens an issue is also able to close the issue. Chairs MUST provide guidance on who is permitted to close an issue and under what conditions.
Restrictions on who can close an issue and under what circumstances are generally not advisable until a document has reached a certain degree of maturity.
Issues that have reached a resolution that has Working Group consensus MUST NOT be reopened unless new information is presented.
For long-running work items, new contributors often raise issues that have already been resolved. Moreover, there could be temptation to reopen contentious issues resolved with rough consensus. Determining whether arguments presented in favor of reopening an issue represents new information might require some discussion in the Working Group.
Chairs are empowered to exercise discretion in determining whether to reopen issues. For more difficult matters, the chairs MAY insist that the Working Group reach consensus on whether an issue should be reopened. Note however that any product of this process still needs to have the support of rough consensus in the Working Group, which could justify reopening issues.
A pull request is a GitHub feature that allows a user to request a change to a repository. A user does not need to have write access to a repository to create a pull request. A user can create a "fork", or copy, of any public repository. The user has write access to their own fork, allowing them to make local changes. A pull request asks the owner of a repository to merge a specific set of changes from a fork (or any branch) into their copy.
Editors are encouraged to make pull requests for all substantial changes rather than committing directly to the "master" branch of the repository. See Section 5.3.2 for discussion on what constitutes a substantial change. A pull request creates an artifact that records the reasons for changes and provides other contributors with an opportunity to review the change. Ideally, pull requests that address substantive issues mention the issue they address in the opening comment. A Working Group policy could require that pull requests are used in this fashion.
Pull requests have many of the same properties as issues, including the ability to host discussion and bear labels. Critically, using pull requests creates a record of actions taken.
For significant changes, leaving a pull request open until discussion of the issue within the Working Group concludes allows the pull request to track the discussion and properly capture the outcome of discussions. Pull requests can be updated as discussions continue or in response to feedback.
Groups of editors could adopt a practice of having one editor create a pull request and another merge it. This ensures that changes are reviewed by editors. Editors are given discretion in how they manage changes amongst themselves.
In addition to the features that pull requests share with issues, users can also review the changes in a pull request. This is a valuable feature, but presents some challenges.
Comments in a review other than a summary are attached to specific lines of the proposed change. Such comments can be hard or impossible to find if changes are subsequently made to the pull request. This is problematic for contributors who do not track discussions closely.
For this reason, Working Group chairs SHOULD discourage the use of inline comments for substantial technical discussion of issues.
A Working Group MUST determine who is permitted to merge pull requests. Document editors SHOULD be permitted to merge pull requests at their discretion. This requires that editors exercise some judgment. Working Group chairs MAY occasionally identify a pull request and request that editors withhold merging until Working Group consensus has been assessed.
Note that the copy of a document that is maintained on GitHub does not need to be a perfect reflection of Working Group consensus at every point in time. Document editors need some flexibility in how they manage a document.
GitHub produces individualized email notifications of activity that each user can adjust to their preferences. In addition to these, some Working Groups have created read-only mailing lists that receive notifications about activity on Working Group repositories. The volume of information on these lists can be too high to monitor actively, but access to an archive of actions can be useful.
An alternative is to rely on periodic email summaries of activity, such as those produced by a notification tool like github-notify-ml (https://github.com/dontcallmedom/github-notify-ml). This tool has been used effectively in several Working Groups, though it requires server infrastructure.
Additionally, clear reporting about the changes that were included in each revision of an Internet-Draft helps ensure that contributors can follow activity. This might be achieved by requesting that editors provide a change log that captures substantive changes to the document in each revision.
Current experience with use of GitHub suggests a few different approaches to greater use of the tool in Working Groups.
This section describes some basic modes for interacting with GitHub, each progressively more involved. This starts with a very lightweight interaction where document management is the only feature that is formally used, then progressively more intensive use of the GitHub issue tracking capabilities are described. These approaches differ primarily in how discussion of substantive matters is managed. Most of the advice in this document applies equally to all models.
A Working Group can adjust these policies to suit their needs, but are advised to avoid gratuitous changes for the sake of consistency across the IETF as a whole. It is possible to use different processes for different documents in the Working Group.
Working Group chairs are responsible for confirming that the Working Group has consensus to adopt any process. In particular, the introduction of a more tightly-controlled process can have the effect of privileging positions already captured in documents, which might disadvantage alternative viewpoints.
In this mode of interaction, GitHub repositories are used to manage changes to documents, but the bulk of the work is conducted using email, face-to-face meetings, and other more traditional interactions. The intent of this policy is to enable document and issue management using GitHub while minimizing the complexity of the process.
In the version of this mode with the least interaction with GitHub, a repository is created for the purposes of document management by editors. Editors might maintain issues and pull requests for their own benefit, but these have no formal standing in the Working Group process.
In addition to managing documents, the Working Group might choose to use GitHub for tracking outstanding issues. In this mode of interaction, a record of the existence of substantive technical discussions is tracked using issues in the issue tracker. However, discussion of any substantial matters is always conducted on mailing lists.
Under this mode, issues and pull requests can be opened by anyone, but anything deemed substantive MUST be resolved exclusively on the mailing list. Discussion on GitHub is limited to recording the state of issues. Only editorial matters can be resolved using the issue tracker.
Chairs and editors are given discretion in determining what issues are substantive. As documents mature, it is generally prudent to prefer consulting the mailing list where there is doubt. As with other Working Group decisions, chairs are the arbiters in case of dispute.
A recurrent problem with this mode of interaction is the tendency for discussions to spontaneously develop in the issue tracker. This requires a degree of discipline from chairs and editors to ensure that any substantive matters are taken to the mailing list.
Retaining mailing lists as the primary venue for discussion of substantive matters ensures that this mode - along with the document management mode - is most compatible with existing work practices for Working Groups. Participants in a Working Group that operates under either model can reasonably be expected to receive all relevant communication about the work of the group from the Working Group mailing list.
Though the mailing list is used for making decisions, the issue tracker can still be a useful record of the state of issues. It is often useful if chairs or editors record details of decisions in issue comments when closing issues as resolved.
This GitHub interaction mode differs from the other modes in that discussion relating to substantive technical matters is allowed to occur on GitHub issues. Though decisions are always subject to confirmation on the mailing list, participants are permitted to conduct substantive discussions on the issue tracker. In some cases, this can include making some decisions without involving the Working Group mailing list.
A Working Group mailing list remains a critical venue for decision making, even where issue discussion occurs elsewhere. Working Group mailing lists generally include a wider audience than those who follow issue discussion, so difficult issues always benefit from list discussion.
Decisions about Working Group consensus MUST always be confirmed using the Working Group mailing list. However, depending on the maturity of documents, this might be a more lightweight interaction, such as sending an email confirmation for an initial set of resolutions arising from discussions on the issue tracker.
Using the mailing list to resolve difficult or controversial issues is strongly encouraged. In those cases, the issue tracker might be used to more fully develop an understanding of problems before initiating a discussion on the mailing list, along lines similar to the design team process (see Section 6.5 of [RFC2418]).
As a more involved process, adopting this mode can require changes in policies as documents become more mature.
During early phases of the design of a protocol, chairs MAY allow editors to manage all aspects of issues. Editors are permitted to make decisions about how to both identify and resolve technical issues, including making any changes that editors feel necessary.
Chairs need to explicitly decide that this sort of process is needed and announce the decision to the Working Group. In many cases, documents that are adopted by a Working Group are already sufficiently mature that a looser process is not beneficial. The primary reason to grant editors more discretionary power is to improve the speed with which changes can be made. The risk is from integrating changes including substantive decisions that don't reflect the consensus of the Working Group or that the need for consensus on an issue is not identified.
Changes made by editors under this process do not lack options for identifying and correcting problems. GitHub and git provide tools for ensuring that changes are tracked and can be audited. Within the usual Working Group process it is expected that Internet-Drafts will receive regular review. Finally, process checkpoints like Working Group Last Call (WGLC; Section 7.4 of [RFC2418]) provide additional safeguards against abuse.
Working Groups are advised against allowing editors this degree of flexibility for the entirety of a document lifecycle. Once a document is more stable and mature, it could be useful to move to a more tightly controlled process.
As a document matures, it becomes more important to understand not just that the document as a whole retains the support of the Working Group, but that changes are not made without wider consultation.
Chairs MAY choose to manage the process of deciding which issues are substantive. For instance, chairs might reserve the ability to use the "design" label to new issues (see Section 5.4.1) and to close issues marked as "design". Chairs SHOULD always allow document editors to identify and address editorial issues as they see fit.
As documents mature further, explicit confirmation of technical decisions with the Working Group mailing list becomes more important.
Chairs can declare Working Group consensus about the resolution of issues in the abstract, allowing editors discretion on how to capture the decisions in documents.
More mature documents require not only consensus, but consensus about specific text. Ideally, substantive changes to documents that have passed WGLC are proposed as pull requests, and MUST be discussed on the mailing list. Having chairs explicitly confirm consensus on changes ensures that previous consensus decisions are not overturned without cause. Chairs MAY institute this stricter process prior to WGLC.
Several schemes for use of issue labels in managing issues have been used successfully. This section outlines these strategies and how they might be applied.
A design/editorial split (see Section 5.4.1) is useful in all cases that the issue tracking capability is used. A Working Groups that only uses GitHub for issue tracking might find that distinction sufficient for their needs.
Working Groups or editors might use additional labels as they choose. Any label that is used as part of a process requires that the process be documented and announced by Working Group chairs. Editors SHOULD be permitted to use labels to manage issues without any formal process significance being attached to those issues.
The most important distinction about an issue is whether it is substantive. The labels of "editorial" and "design" are used to represent this distinction.
An issue labeled as "editorial" has no substantive effect on a document, except to the extent that addressing the issue might make understanding the specification easier. Resolution of "editorial" issues can be left to the discretion of editors.
An issue labeled as "design" has or might have a substantive effect on a document. For protocol specifications, a "design" issue is one that might affect implementations or interoperability requirements. Addressing a "design" issue ultimately requires Working Group consensus, even if the resolution is to make no change.
This distinction can be applied to all types of document. For instance, a "design" issue for an Informational document might be raised to discuss possible changes to important concepts in the document.
Labels can be used to manage processes. As documents mature and issues become more numerous, labels can be used to clearly mark the status of issues. In particular, labelling of issues can be used to help in managing Working Group decisions.
For documents that are less mature, issues with resolutions but no specific proposals for changes to text might be marked "editor-ready" as a way of signaling that there is consensus about an approach, but no specific proposal. Chairs might use this to signal that discussion is complete and that editors are to be given discretion in the construction of text.
In contrast, if specific text is a prerequisite for resolving issues, as might be the case for more mature documents, a "proposal-ready" label might be used by editors to mark issues that they believe to have acceptable resolutions.
For resolved issues, a "has-consensus" label might be used by chairs to mark issues for which formal Working Group decisions have been made (Section 6.1 of [RFC2418]).
A "future" or "next-version" label might be used to mark and thereby save issues for a future version of or extension to a protocol, particularly where a resolution is made to take no action.
Repositories with multiple interrelated documents or a complex document with multiple logical components might benefit from labels that identify different aspects of the work. The choice of appropriate labels for components will depend on the structure of specific documents.
Other labels can be used depending on the needs of editors and Working Group processes. For example,
* An "invalid" label might be used for issues that were raised in error.
* A "blocked" label might indicate an issue is awaiting resolution of an external process or related issue.
* A "parked" label might be used to indicate issues that do not require immediate Working Group attention.
During the development of a document, individual revisions of the document can be built and formally submitted as an Internet-Draft. This creates a stable snapshot and makes the content of the in- progress document available to a wider audience. Documents submitted as Internet-Drafts are not expected to address all open issues or merge outstanding pull requests.
Section 7.1 of [RFC2418] recommends that editors create a new Internet-Draft submission two weeks prior to every session, which includes IETF meetings, other in-person meetings, and telephone or video conferences. Though discussion could use the current version of a document from version control, participants in a session cannot be expected to monitor changes to documents in real-time; a published Internet-Draft ensures that there is a common, stable state that is known to all participants.
Internet-Drafts that use a GitHub repository SHOULD include a notice that includes a reference to the repository. This notice might also include information about where to discuss the draft.
Revisions used to generate documents that are submitted as Internet- Drafts SHOULD be tagged in repositories to provide a record of submissions.
Working Group chairs MAY request a revision of an Internet-Draft being managed on Github at any time, in consultation with document editors.
The work that occurs on GitHub could be part of the consensus process, but the ultimate decision on consensus regarding a document is made by the chairs [RFC2026].
GitHub facilitates more involved interactions, which can result in a much higher level of activity than a typical Working Group mailing list. Participants who wish to limit their time commitment might follow GitHub activity selectively, either by following only specific issues or by occasionally reviewing the state of the document. Other participants might not use GitHub at all. Chairs are reminded that assessing consensus based on GitHub content alone cannot be assumed to reach all interested participants.
As described in [RFC2418], chairs consider input from all discussion venues when assessing consensus. These include mailing lists, IETF meetings, and interim meetings in addition to discussion on GitHub. Each venue has different selection biases that might need to be considered.
A Working Group chair MUST consult the Working Group mailing list for any issue that is potentially contentious. Relying on input provided through GitHub alone might result in gaining input from a narrower set of participants. This includes important milestones like Working Group Last-Call, where review from the widest possible audience ensures a higher quality document.
If permitted, GitHub will be used for technical discussion and decisions, especially during early stages of development of a document. Any decisions are confirmed through review within the Working Group, and ultimately, through Working Group Last Call; see Section 7.4 of [RFC2418].
The use of issues and labels has been effective in managing contentious issues. Explicitly labeling closed issues to identify those with formal consensus means that there is no confusion about the status of issues.
Various third-party services offer the ability to run tests and other work when changes are made to a repository.
One common practice is to use these continuous integration services to build a text or HTML version of a document. This is then published to GitHub Pages, which allows users to view a version of the most recent revision of a document. Including a prominent link to this version of the document (such as in the README) makes it easier for new contributors to find a readable copy of the most recent version of a draft. In addition, including links to differences between this generated version and any published document helps contributors identify recent changes.
Continuous integration can also validate pull requests and other changes for errors. The most basic check is whether the source file can be transformed successfully into a valid Internet-Draft. For example, this might include checking that XML source is syntactically correct.
For a document that uses formal languages as part of the specification, such as schema or source code, a continuous integration system might also be used to validate any formal language that the document contains. Tests for any source code that the document contains might be run, or examples might be checked for correctness.
Document editors are primarily responsible for maintaining documents. Taking on a few additional tasks can greatly improve the process for the Working Group.
Using GitHub means that it is more likely that a contribution is made by users who are not very familiar with the work. Pull requests from new contributors can contain errors or omissions. Duplicate issues are commonplace. Proposed changes might have grammatical errors or they might diverge from existing style. If a change is generally sound, rather than rejecting the pull request or requesting changes, editors could instead accept the change and then make any necessary corrections.
Editors SHOULD NOT close a pull request or issue without first understanding why the item was created. Editors and chairs SHOULD try to explain every action clearly and concisely. Even if a contributor seems rude, being courteous in response is always best.
If a contributor makes a comment that raises a new issue, editors can create an issue or - if there is an obvious solution - a pull request. It does not matter what venue the issue was raised in (e.g., email, issue discussion, a pull request review); capturing issues quickly ensures that problems become visible and can be tracked.
This takes a little more effort, but these simple steps can help encourage contributions, which will ultimately improve the quality of documents.
Continuity of operations is always a consideration when taking a dependency on an external service. If GitHub were to fail in some way, anyone relying upon its services would be seriously affected.
Widespread use of git reduces the exposure to a system failure because the primary repository is replicated in multiple locations. This includes hosted web pages; the content of web pages is maintained as a branch in the main repository.
However, other information maintained on GitHub is more vulnerable to loss. This includes issues and discussion on those issues, discussion and reviews of commits and pull requests, and any content hosted on the wiki. Tools exist for extracting this information for backup.
As specified in [GH-CONFIG], backup copies of repositories and other important data SHOULD be maintained.
The potential for malicious actions by compromised or malcontent editors, chairs and area directors is relevant in maintaining the integrity of the content that GitHub hosts. Backups allow for recovery of content, and regular submissions as Internet-Drafts ensure that work is not lost completely.
A compromise of GitHub does not pose a significant threat to Working Group operations as it is expected that most data, aside from individual credentials, is made public.
Compromise of credentials could mean loss of control for repositories and organizations. All contributors, especially those with commit or admin privileges SHOULD use current best practices for protection of credentials, such as multi-factor authentication.
This document has no IANA actions.
[RFC2026]
Bradner, S., "The Internet Standards Process -- Revision 3", BCP 9, RFC 2026, DOI 10.17487/RFC2026, October 1996, <https://www.rfc-editor.org/info/rfc2026>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC2418]
Bradner, S., "IETF Working Group Guidelines and Procedures", BCP 25, RFC 2418, DOI 10.17487/RFC2418, September 1998, <https://www.rfc-editor.org/info/rfc2418>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[GH-CONFIG]
Cooper, A. and P. Hoffman, "Working Group GitHub Administration", Work in Progress, Internet-Draft, draft- ietf-git-github-wg-configuration-06, 13 February 2020, <http://www.ietf.org/internet-drafts/draft-ietf-git- github-wg-configuration-06.txt>.
[GLOSSARY]
GitHub, "GitHub glossary", March 2020, <https://help.github.com/en/github/getting-started-with- github/github-glossary>.
[RFC7991]
Hoffman, P., "The "xml2rfc" Version 3 Vocabulary", RFC 7991, DOI 10.17487/RFC7991, December 2016, <https://www.rfc-editor.org/info/rfc7991>.
Acknowledgments
This work would not have been possible without the hard work of those people who have trialled use of GitHub at the IETF. Alia Atlas contributed significant text to an earlier version of this document. Tommy Pauly, Rich Salz, and Christopher Wood all provided significant input.
Authors' Addresses
Email: mt@lowentropy.net
Email: barbara.stark@att.com
This text describes the conversion process used to create this ebook.
The conversion process goes like follows:
Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.
The conversion process goes like follows:
This program takes the title, time and logo postscript, and creates a postscript file which it then runs through ghostscript and converts it file suitable for the Kindle 3. The title can have three lines separated with "\n". Normally the top two lines contain the actual title, and third line contains the date of conversion. The time is added to the end of the page with small font, so it can be used during development phase to see which version of ebook this is (during development I did have multiple versions loaded to my Kindle and it was painful to find out which one of them is newest before this was added). The logo is ietf-logo.eps directly from the IETF web page.
The page is initially created at 2400x3200 pixel resolution and then scaled down to 25% of size meaning the final page is 600x800 pixels in size.
For RFC ebook:
For the Internet-Draft ebooks:
NCX file contains list all files and the navigation information. That is used when you press left or right arrows on the kindle to see where to move next. See make-ncx manual page for information about options.
For RFC ebook:
For the Internet-Draft ebooks:
Open package format file describes what files are in the ebook. It also contains information where to start reading and in which order entries are appearing in the book. See make-opf manual page for information about options.
For RFCs the conversion command line is:
For Internet-Drafts the conversion command line is:
This program takes the text formatted RFC or Internet-Draft and formats it to html suitable for ebooks. The first step is to remove page formatting (page breaks, page numbers, page headers and footers). In that phase it also tries to see if one textual paragraph is continuing from the previous page to the next, and if so then it will glue them together. The second phase is to go through all paragraphs and try to find out what type of paragraph it is (text, picture, header, table of contents, authors address section, terminology defination, bulleted or numbered list, references section). After this it goes through the actual text paragraphs and converts them to html suitable for their type. See rfc2html manual page for information about options.
TBF
TBF
TBF
Issues I have found when converting this to kindle 3
It seems there is maximum number of items the ncx file can have, or some other limitation in the ncx file parsing. When I included all the rfcs to the ncx file then the next and previous arrows in the kindle 3 does not work anymore. If the number if items is reduced then they start working.
When I tried to use the best compression of kindlegen, the program did create a eBook file but all the links inside the file pointed in wrong place, i.e. when you used link to go rfc5996 you ended up in the middle of rfc6020 or so.
The mobipockect supports multiple indexes and the eBook originally included titleword and full title text indexes, but those were removed as kindle 3 does not support them.
The automatic index (using the menu and selecting index) sometimes misses the last item in it. Thats why I added this conversion description to the end, so if something is missing it will be this text.
Kindle 3 does support monospace font and the screen is wide enough for 67 charactes if screen is rotated. This allows the normal 32 bit packet frame description pictures to be shown properly using the normal pre-tag. The Kindle 3 will still wrap words to the next line, and this was problematic when combined with hyphens used in pictures. To fix this all the hyphens in the text are converted to the no-breaking hyphens.
Because of the previous issue with word wrap we needed to use non-breaking hyphens, but unfortunately they do not show properly on the kindle for PC, but instead of unknown character box is shown instead.
For some reason the searching from the RFC eBook does not work on the Kindle 3.
make-ncx - Create NCX file
make-ncx [--help|-h] [--version|-V] [--verbose|-v] [--output|-o output-file-name] [--config config-file] [--depth|-d depth-of-toc] [--total-page-count|-T total-page-count] [--max-page-number|-m max-page-number] [--separator|-s separator-regexp] --author|-a author --title|-t title entry ... [--class|-c class] entry ... [--in] entry ... [--out] [--autosplit|-A split-count] entry ... [--include-regexp include-regexp] entry ... [--exclude-regexp exclude-regexp] entry ... [--split-regexp split-regexp] entry ... [--input-file|-i input-file] entry ... entry ...
make-ncx --help
make-ncx takes list of ncx entries and creates NCX (Navigation Control for for XML applications Format) file out of them.
NCX is hierarchical structure, and the make-ncx supports this so that the list of entries can include --in and --out options to in and out in the hierarchy. Note, that the first item is always on level 1 and you can go in only one level per entry, i.e. adding two --in options right after each other is an error. Multiple --out options is allowed, but going out from level 1 is not allowed.
Each entry contain 4 fields separated from each other by separator regexp. The first field is the class of the entry. This can be something like "book", "toc", "entry" etc. Second field is the id of the entry. This should be something unique. Third field is the actual link inside the mobibook, i.e. "index.html", "index.html#s1000" or "rfc1234.html". Last field is the text of the entry.
If only 3 fields are given then they are assumed to be id, link and text, and the class is the one given with --class option.
If only 2 fields are given then they are assumed to be link and text, and the class is processed as with 3 fields, and id is autogenerated from the link, by removing path, prefixes and special chars.
If only one field is given then it is assumed to be link, and class and id is generated as previously, and link is converted to text by removing prefixes and removing some special charactes and replacing '/', '-', '_' to spaces.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to stdout.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
Max depth of the NCX file. If not given this is autodetected from the options.
Sets total page count. If not given this is set to 0.
Sets max page number. If not given this is set to 0.
Separator regexp used to split entries to class, id, link and text. Defaults to ':'
Author of the publication.
Title of the publication.
Go one level into the hierarchy. This option is used inside the entry list and it affects the entries coming after it.
Go one level out in the hierarchy. This option is used inside the entry list and it affects the entries coming after it.
Set the class of the entries coming after this if no class given in the entry. This option is used inside the entry list and it affects the entries coming after it.
Starts autosplitting long list of entries, so that split-count entries are combined so that the first entry stays at current level, and all other entries are moved in one level inside the first entry. This process is repeated until --in, --out, or new --autosplit option is found. This option is used inside the entry list and it affects the entries coming after it.
Filters entries based on the regexp. Only those entries will be processed which are matching this regexp. This allows creating one entry file having all entries, and then filter them so that only parts of them are included to the final ncx file. This option is used inside the entry list and it affects the entries coming after it.
Filters entries based on the regexp. Only those entries will be processed which do not match this regexp. This allows creating one entry file having all entries, and then filter them so that only parts of them are included to the final ncx file. This option is used inside the entry list and it affects the entries coming after it.
Automatically split entries to sublevels based on the regexp. This will match entries against the regexp and when first match is found it will put this entry on current level and then go down one level, and then put all further entries not matching this regexp to that level. Further matching entries are moved to the same level as the first one. This can be used in combination with --autosplit option in which case --autosplit entries will be below this, meaning the hierarchy will have 3 levels. Top level contains the entries matching this regexp. The next level contains every Nth entry and lowest level contains all other entries. Every time matching entry is found the --autosplit counter is reset.
Reads the list of options from the input-file instead of reading them from command line. The options are in the file one option at line, and are processed exactly as they would be on the command line. This means that you can give --class, --in, --autosplit etc options first and then just get the list of filenames from the file.
make-ncx --title foo \ --author bar \ toc:toc:index.html:Index \ book:rfc0001:rfc0001.html:RFC0001
make-ncx --title "RFC Index" \ --author "IETF" \ "toc:toc:index.html:Table of Contents" \ --in \ --class entry \ 0000:index.html#s0000:RFC0000 \ 1000:index.html#s1000:RFC1000 \ 2000:index.html#s2000:RFC2000 \ 3000:index.html#s3000:RFC3000 \ 4000:index.html#s4000:RFC4000 \ 5000:index.html#s5000:RFC5000 \ 6000:index.html#s6000:RFC6000 \ --out \ --class book \ --autosplit 5 \ rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \ rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \ rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \ rfc6006.html rfc6007.html
make-ncx --title "RFC Index" \ --author "IETF" \ "toc:toc:index.html:Table of Contents" \ --in \ --class entry \ --input-file toc-entries.txt \ --out \ --class book \ --autosplit 5 \ --input-file rfc-list.txt
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created when making RFC mobibook files for IETF use.
make-opf - Create OPF file
make-opf [--help|-h] [--version|-V] [--verbose|-v] [--output|-o output-file-name] [--config config-file] [--beginning|-b first-page-filename] [--cover|-c cover-jpg-file-name] [--creator|-C creator] [--date|-D date] [--description|-d description] --id|-i id [--index|-I index-html-file-name] --language|-l language [--publisher|-p publisher] [--role|-r creator-role] [--stylesheet|-S stylesheet-css-file-name] [--subject|-s subject] --title|-t title [--toc|-T toc-ncs-file-name] filename ...
make-opf --help
make-opf takes list of html files inside the mobibook and creates a OPF (Open Packaging Format) file out of them.
Files are added to the spine in the order they appear in the command line. Note, that before any files there is --cover, --beginning and ---index pages, which always come in that order in the beginning of the book.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to stdout.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
File name inside the mobibook which is used as a beginning of the book, i.e. when book is opened it comes to this page.
File name inside the mobibook which is used as a cover page for the publication. Must be jpg file. This is mandatory for Kindle books.
Creator of the publication. Usually the name of the author.
Date of the publication.
Short description of the publication.
Unique ID for the publication.
File name inside the mobibook which is used as index. If included this is also used as table of contents.
Language tag of the publication. Typically "en".
Publisher name.
Role of the creator, i.e. author (aut), collaborator (clb), editor (edt) etc.
File name inside the mobibook which used as css stylesheet.
Subject of the publication.
Title of the publication.
File name inside the mobibook which is used as NCS table of contents file name.
make-opf.pl --title "${partial}RFC Index $d" \ --language en \ --cover rfc.jpg \ --subject Reference \ --id "$id" \ --role clb \ --creator "Tero Kivinen" \ --publisher "IETF" \ --description "All RFCs as mobibook" \ --date "$d" \ --index index.html \ --stylesheet rfc.css \ --toc rfc.ncx \ rfc*.html
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created when making RFC mobibook files for IETF use.
rfc2html - Convert RFC to simple html
rfc2html [--help|-h] [--version|-V] [--verbose|-v] [--key-index] [--navigation|-n navigation-links] [--filelist|-f filelist-file] [--rfc|-r rfc-number] [--title|-t title-prefix] [--output|-o output-file] [--config config-file] filename ...
rfc2html --help
rfc2html takes RFC txt file and converts it to simple html file.
filename is read in and new file is created so that .txt extension is removed from the filename (if it exists) and .html extesion is added.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to <inputfile>.txt.
Gives the RFC number of the current file. Used to make title information correct.
Gives text added to the beginning of the title, for example the file name.
Filename of the file containing list of files in the book. If given only those links pointing to files listed in this file are converted to links.
Creates navigation links at the top of the file. The navigation links text is semicolon separated list of navigation links. Each link consists of file name inside the book, and the link title. The filename can either be full filename like "index.html", or it can be relative filename like "-1" or "+100". Using this option requires that the filelist option is also used and all links given here are found from the filelist. The filelist is also used to find the current file name and then calculate relative filenames from there, i.e. "-1" means the filename in the filename list just before this file.
The filename used for searching this entry from the filelist is the output filename, and if exact match is not found then the path components are removed and file is searched again.
Create key index entries. Those are only useful for mobipacket reader, they do not work on kindle.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created based on the rfcmarkup version 1.90 to convert RFCs to simple html suitable for kindle ebook conversion. The rfcmarkup tries to keep formatting intact, while this actually removes things which are not needed in ebooks, i.e page breaks and page numbers, and makes text paragraphs as html paragraphs, instead of using <pre> around the whole file.