Abstract

This document describes the TinyMT32 Pseudo Random Number Generator (PRNG) that produces 32-bit pseudo-random unsigned integers and aims at having a simple-to-use and deterministic solution. This PRNG is a small-sized variant of Mersenne Twister (MT) PRNG, also designed by M. Saito and M. Matsumoto. The main advantage of TinyMT32 over MT is the use of a small internal state, compatible with most target platforms including embedded devices, while keeping a reasonably good randomness.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 6, 2019.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document.
This document specifies the TinyMT32 PRNG, as a specialization of the reference implementation version 1.1 (2015/04/24) by Mutsuo Saito and Makoto Matsumoto, from Hiroshima University:

- Official web site: <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/TINYMT/>
- Official github site and reference implementation: <https://github.com/MersenneTwister-Lab/TinyMT>

This specialisation aims at having a simple-to-use and deterministic PRNG, as explained below.

TinyMT is a new small-sized variant of Mersenne Twister (MT) introduced by Mutsuo Saito and Makoto Matsumoto in 2011. This document focusses on the TinyMT32 variant (rather than TinyMT64) of the PRNG, which outputs 32-bit unsigned integers.

The purpose of TinyMT is not to replace Mersenne Twister: TinyMT has a far shorter period than MT. The merit of TinyMT is in its small size of the internal state of 127 bits, far smaller than 19937 bits of MT. According to statistical tests (BigCrush in TestU01 <http://simul.iro.umontreal.ca/testu01/tu01.html> and AdaptiveCrush...
The quality of the outputs of TinyMT seems pretty good, taking the small size of the internal state into consideration. From this point of view, TinyMT32 represents a major improvement with respect to the Park-Miller Linear Congruential PRNG (e.g., as specified in [RFC5170]).

The TinyMT32 PRNG initialization depends, among other things, on a parameter set -- namely (mat1, mat2, tmat) -- that needs to be well chosen (pre-calculated values are available in the official web site). In order to facilitate the use of this PRNG, and unlike the implementation version 1.1 (2015/04/24) by Mutsuo Saito and Makoto Matsumoto, this specification requires the use of a specific parameter set (see Section 3.1). The implementation version 1.1 (2015/04/24) also proposes two initialisation functions that differ on the approach to seed the PRNG. A second difference is the removal of the tinymt32_init_by_array() function to keep only the simple initialisation through a single seed value (see Section 3.2).

Finally, the determinism of this PRNG, for a given seed, has been carefully checked (see Section 3.3). Indeed, this determinism can be a key requirement as it the case with [RLC-ID] that normatively depends on this specification.

2. Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

3. TinyMT32 PRNG Specification

3.1. TinyMT32 Source Code

The TinyMT32 PRNG requires to be initialized with a parameter set that needs to be well chosen. In this specification, for the sake of simplicity, the following parameter set MUST be used:

- mat1 = 0x8f7011ee = 2406486510
- mat2 = 0xfc78ff1f = 4235788063
- tmat = 0x3793fdff = 932445695

This parameter set is the first entry of the precalculated parameter sets in file tinymt32dc.0.1048576.txt, by Kenji Rikitake, and available at <https://github.com/jjlbdx/tinymtdc>
<CODE BEGINS>
/**
 * Tiny Mersenne Twister only 127 bit internal state.
 * Derived from the reference implementation version 1.1 (2015/04/24)
 * by Mutsuo Saito (Hiroshima University) and Makoto Matsumoto
 * (Hiroshima University).
 */
#include <stdint.h>

/**
 * tinymt32 internal state vector and parameters
 */
typedef struct {
 uint32_t status[4];
 uint32_t mat1;
 uint32_t mat2;
 uint32_t tmat;
} tinymt32_t;

static void tinymt32_next_state (tinymt32_t * s);
static uint32_t tinymt32_temper (tinymt32_t * s);

/**
 * Parameter set to use for this IETF specification. Don’t change.
 */
This parameter set is the first entry of the precalculated parameter sets in file tinymt32dc.0.1048576.txt, by Kenji Rikitake, available at:
It is also the parameter set used:

```c
const uint32_t TINYMT32_MAT1_PARAM = UINT32_C(0x8f7011ee);
const uint32_t TINYMT32_MAT2_PARAM = UINT32_C(0xfc78ff1f);
const uint32_t TINYMT32_TMAT_PARAM = UINT32_C(0x3793fdff);

/*
* This function initializes the internal state array with a 32-bit unsigned integer seed.
* @param s pointer to tinymt internal state.
* @param seed a 32-bit unsigned integer used as a seed.
*/
void tinymt32_init (tinymt32_t * s, uint32_t seed) {
    const uint32_t MIN_LOOP = 8;
    const uint32_t PRE_LOOP = 8;
    s->status[0] = seed;
    s->status[1] = s->mat1 = TINYMT32_MAT1_PARAM;
    s->status[2] = s->mat2 = TINYMT32_MAT2_PARAM;
    for (int i = 1; i < MIN_LOOP; i++) {
        s->status[i & 3] ^= i + UINT32_C(1812433253)
            * (s->status[(i - 1) & 3]
                ^ (s->status[(i - 1) & 3] >> 30));
    }
    /*
    * NB: the parameter set of this specification warrants
    * that none of the possible 2^32 seeds leads to an all-zero 127-bit internal state. Therefore, the
    * period_certification() function of the original TinyMT32 source code has been safely removed. If
    * another parameter set is used, this function will have to be re-introduced here.
    */
    for (int i = 0; i < PRE_LOOP; i++) {
        tinymt32_next_state(s);
    }
}
```
* This function outputs a 32-bit unsigned integer from
* the internal state.
* @param s pointer to tinymt internal state.
* @return 32-bit unsigned integer r (0 <= r < 2^32).
*/

uint32_t tinymt32_generate_uint32 (tinymt32_t * s)
{
 tinymt32_next_state(s);
 return tinymt32_temper(s);
}

/**
* Internal tinymt32 constants and functions.
* Users should not call these functions directly.
*/
const uint32_t TINYMT32_SH0 = 1;
const uint32_t TINYMT32_SH1 = 10;
const uint32_t TINYMT32_SH8 = 8;
const uint32_t TINYMT32_MASK = UINT32_C(0x7fffffff);

/**
* This function changes the internal state of tinymt32.
* @param s pointer to tinymt internal state.
*/
static void tinymt32_next_state (tinymt32_t * s)
{
 uint32_t x;
 uint32_t y;

 y = s->status[3];
 x = (s->status[0] & TINYMT32_MASK)
 ^ s->status[1]
 ^ s->status[2];
 x ^= (x << TINYMT32_SH0);
 y ^= (y >> TINYMT32_SH0) ^ x;
 s->status[0] = s->status[1];
 s->status[1] = s->status[2];
 s->status[2] = x ^ (y << TINYMT32_SH1);
 s->status[3] = y;
 /*
 * The if (y & 1) {...} block below replaces:
 * s->status[1] ^= -(int32_t)(y & 1)) & s->mat1;
 * s->status[2] ^= -(int32_t)(y & 1)) & s->mat2;
 * The adopted code is equivalent to the original code
 * but does not depend on the representation of negative
 * integers by 2’s complements. It is therefore more
 * portable, but includes an if-branch which may slow
 * down the generation speed.
/*
if (y & 1) {
 s->status[1] ^= s->mat1;
 s->status[2] ^= s->mat2;
}
*/

/**
* This function outputs a 32-bit unsigned integer from
* the internal state.
* @param s pointer to tinymt internal state.
* @return 32-bit unsigned pseudo-random number.
*/
static uint32_t tinymt32_temper (tinymt32_t * s)
{
 uint32_t t0, t1;
 t0 = s->status[3];
 t1 = s->status[0] + (s->status[2] >> TINYMT32_SH8);
 t0 ^= t1;
 t0 ^= -((int32_t)(t1 & 1)) & s->tmat;
 return t0;
}

Figure 1: TinyMT32 Reference Implementation

3.2. TinyMT32 Usage

This PRNG MUST first be initialized with the following function:

 void tinymt32_init (tinymt32_t * s, uint32_t seed);

It takes as input a 32-bit unsigned integer used as a seed (note that
value 0 is authorized by TinyMT32). This function also takes as
input a pointer to an instance of a tinymt32_t structure that needs
to be allocated by the caller but left uninitialized. This structure
will then be updated by the various TinyMT32 functions in order to keep
the internal state of the PRNG. The use of this structure authorizes
several instances of this PRNG to be used in parallel, each of them
having its own instance of the structure.

Then, each time a new 32-bit pseudo-random unsigned integer between 0
and 2^32 - 1 inclusive is needed, the following function is used:

 uint32_t tinymt32_generate_uint32 (tinymt32_t * s);

Of course, the tinymt32_t structure must be left unchanged by the
caller between successive calls to this function.
3.3. Specific Implementation Validation and Deterministic Behavior

PRNG determinism, for a given seed, can be a requirement (e.g., with [RLC-ID]). Consequently, any implementation of the TinyMT32 PRNG in line with this specification MUST comply with the following criteria. Using a seed value of 1, the first 50 values returned by tinymt32_generate_uint32(s) as 32-bit unsigned integers MUST be equal to values provided in Figure 2. Note that these values come from the tinymt/check32.out.txt file provided by the PRNG authors to validate implementations of TinyMT32, as part of the MersenneTwister-Lab/TinyMT Github repository.

2545341989 981918433 3715302833 2387538352 3591001365
3820442102 2114400566 2196103051 2783359912 764534509
643179475 1822416315 881558334 4207026366 3690273640
3240535687 292147122 3984931427 4092394160 44209675
2188315343 2908663843 1834519336 3774670961 301990707
4065554902 1239765502 4035716197 3412127188 552822483
161364450 353727785 140085994 149132008 2547770827
4064042525 4078297538 2057335507 622384752 2041665899
2193913817 1080849512 33160901 662956935 642999063
3384709977 1723175122 3866752252 521822317 2292524454

Figure 2: First 50 decimal values returned by tinymt32_generate_uint32(s) as 32-bit unsigned integers, with a seed value of 1.

In particular, the deterministic behavior of the Figure 1 source code has been checked across several platforms: high-end laptops running 64-bits Mac OSX and Linux/Ubuntu; a board featuring a 32-bits ARM Cortex-A15 and running 32-bit Linux/Ubuntu; several embedded cards featuring either an ARM Cortex-M0+, a Cortex-M3 or a Cortex-M4 32-bit microcontroller, all of them running RIOT [Baccelli18]; two low-end embedded cards featuring either a 16-bit microcontroller (TI MSP430) or a 8-bit microcontroller (Arduino ATMEGA2560), both of them running RIOT.

This specification only outputs 32-bit unsigned pseudo-random numbers and does not try to map this output to a smaller integer range (e.g., between 10 and 49 inclusive). If a specific use-case needs such a mapping, it will have to provide its own function. In that case, if PRNG determinism is also required, the use of floating point (single or double precision) to perform this mapping should probably be avoided, these calculations leading potentially to different rounding errors across different target platforms. Great care should also be put on not introducing biases in the randomness of the mapped output (it may be the case with some mapping algorithms) incompatible with...
the use-case requirements. The details of how to perform such a mapping are out-of-scope of this document.

4. Security Considerations

The authors do not believe the present specification generates specific security risks per se.

5. IANA Considerations

This document does not require any IANA action.

6. Acknowledgments

The authors would like to thank Belkacem Teibi with whom we explored TinyMT32 specificities when looking to an alternative to the Park-Miller Linear Congruential PRNG. The authors would like to thank the three TSVWG chairs, Wesley Eddy, our shepherd, David Black and Gorry Fairhurst, as well as Spencer Dawkins and Mirja Kuhlewind. Last but not least, the authors are really grateful to the IESG members, in particular Benjamin Kaduk, Eric Rescorla, and Adam Roach for their highly valuable feedbacks that greatly contributed to improve this specification.

7. References

7.1. Normative References

7.2. Informative References

Authors’ Addresses

Mutsuo Saito
Hiroshima University
Japan
EMail: saito@math.sci.hiroshima-u.ac.jp

Makoto Matsumoto
Hiroshima University
Japan
EMail: m-mat@math.sci.hiroshima-u.ac.jp

Vincent Roca
INRIA
Univ. Grenoble Alpes
France
EMail: vincent.roca@inria.fr

Emmanuel Baccelli
INRIA
France
EMail: emmanuel.baccelli@inria.fr