draft-ietf-ccamp-gmpls-ospf-g709v3-06.txt   draft-ietf-ccamp-gmpls-ospf-g709v3-07.txt 
CCAMP Working Group D. Ceccarelli, Ed. CCAMP Working Group D. Ceccarelli, Ed.
Internet-Draft D. Caviglia Internet-Draft D. Caviglia
Intended status: Standards Track Ericsson Updates: 4203 (if approved) Ericsson
Expires: October 6, 2013 F. Zhang Intended status: Standards Track F. Zhang
D. Li Expires: December 27, 2013 D. Li
Huawei Technologies Huawei Technologies
S. Belotti S. Belotti
P. Grandi P. Grandi
Alcatel-Lucent Alcatel-Lucent
R. Rao R. Rao
K. Pithewan K. Pithewan
Infinera Corporation Infinera Corporation
J. Drake J. Drake
Juniper Juniper
April 4, 2013 June 25, 2013
Traffic Engineering Extensions to OSPF for Generalized MPLS (GMPLS) Traffic Engineering Extensions to OSPF for Generalized MPLS (GMPLS)
Control of Evolving G.709 OTN Networks Control of Evolving G.709 OTN Networks
draft-ietf-ccamp-gmpls-ospf-g709v3-06 draft-ietf-ccamp-gmpls-ospf-g709v3-07
Abstract Abstract
ITU-T Recommendation G.709 [G.709-2012] has introduced new fixed and
flexible Optical Data Unit (ODU) containers, enabling optimized
support for an increasingly abundant service mix.
This document describes Open Shortest Path First - Traffic This document describes Open Shortest Path First - Traffic
Engineering (OSPF-TE) routing protocol extensions to support Engineering (OSPF-TE) routing protocol extensions to support
Generalized MPLS (GMPLS) control of all currently defined ODU Generalized MPLS (GMPLS) control of Optical Transport Networks (OTN)
containers, in support of both sub-lambda and lambda level routing specified in ITU-T Recommendation G.709 as published in 2012. It
granularity. extends mechanisms defined in RFC4203.
Status of this Memo Status of this Memo
This Internet-Draft is submitted in full conformance with the This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79. provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet- working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/. Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
This Internet-Draft will expire on October 6, 2013.
Copyright Notice This Internet-Draft will expire on December 27, 2013.
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License. described in the Simplified BSD License.
Table of Contents Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 4 1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3
2. OSPF-TE Extensions . . . . . . . . . . . . . . . . . . . . . . 4 2. OSPF-TE Extensions . . . . . . . . . . . . . . . . . . . . . . 3
3. TE-Link Representation . . . . . . . . . . . . . . . . . . . . 6 3. TE-Link Representation . . . . . . . . . . . . . . . . . . . . 5
4. ISCD format extensions . . . . . . . . . . . . . . . . . . . . 7 4. ISCD format extensions . . . . . . . . . . . . . . . . . . . . 5
4.1. Switch Capability Specific Information . . . . . . . . . . 8 4.1. Switching Capability Specific Information . . . . . . . . 7
4.1.1. Switch Capability Specific Information for fixed 4.1.1. Switching Capability Specific Information for
containers . . . . . . . . . . . . . . . . . . . . . . 9 fixed containers . . . . . . . . . . . . . . . . . . . 8
4.1.2. Switch Capability Specific Information for 4.1.2. Switching Capability Specific Information for
variable containers . . . . . . . . . . . . . . . . . 9 variable containers . . . . . . . . . . . . . . . . . 8
4.1.3. Switch Capability Specific Information - Field 4.1.3. Switching Capability Specific Information - Field
values and explanation . . . . . . . . . . . . . . . . 10 values and explanation . . . . . . . . . . . . . . . . 9
5. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1. MAX LSP Bandwidth fields in the ISCD . . . . . . . . . . . 13 5.1. MAX LSP Bandwidth fields in the ISCD . . . . . . . . . . . 12
5.2. Example of T,S and TSG utilization . . . . . . . . . . . . 15 5.2. Example of T,S and TS granularity utilization . . . . . . 14
5.2.1. Example of different TSGs . . . . . . . . . . . . . . 16 5.2.1. Example of different TS Granularities . . . . . . . . 15
5.3. Example of ODUflex advertisement . . . . . . . . . . . . . 18 5.3. Example of ODUflex advertisement . . . . . . . . . . . . . 17
5.4. Example of single stage muxing . . . . . . . . . . . . . . 21 5.4. Example of single stage muxing . . . . . . . . . . . . . . 20
5.5. Example of multi stage muxing - Unbundled link . . . . . . 23 5.5. Example of multi stage muxing - Unbundled link . . . . . . 22
5.6. Example of multi stage muxing - Bundled links . . . . . . 25 5.6. Example of multi stage muxing - Bundled links . . . . . . 24
5.7. Example of component links with non homogeneous 5.7. Example of component links with non homogeneous
hierarchies . . . . . . . . . . . . . . . . . . . . . . . 26 hierarchies . . . . . . . . . . . . . . . . . . . . . . . 25
6. Compatibility . . . . . . . . . . . . . . . . . . . . . . . . 28 6. Compatibility . . . . . . . . . . . . . . . . . . . . . . . . 27
7. Security Considerations . . . . . . . . . . . . . . . . . . . 29 7. Security Considerations . . . . . . . . . . . . . . . . . . . 28
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 29 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 28
9. Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 30 9. Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 29
10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 32 10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 31
11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 32 11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11.1. Normative References . . . . . . . . . . . . . . . . . . . 32 11.1. Normative References . . . . . . . . . . . . . . . . . . . 31
11.2. Informative References . . . . . . . . . . . . . . . . . . 32 11.2. Informative References . . . . . . . . . . . . . . . . . . 31
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 33 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 32
1. Introduction 1. Introduction
G.709 Optical Transport Network (OTN) [G.709-2012] includes new fixed G.709 Optical Transport Network (OTN) [G.709-2012] includes new fixed
and flexible ODU containers, two types of Tributary Slots (i.e. and flexible ODU (Optical channel Data Unit) containers, two types of
1.25Gbps and 2.5Gbps), and supports various multiplexing Tributary Slots (i.e. 1.25Gbps and 2.5Gbps), and supports various
relationships (e.g., ODUj multiplexed into ODUk (j<k)), two different multiplexing relationships (e.g., ODUj multiplexed into ODUk (j<k)),
tributary slots for ODUk (K=1, 2, 3) and ODUflex service type, which two different tributary slots for ODUk (K=1, 2, 3) and ODUflex
is being standardized in ITU-T. In order to present this information service type. In order to present this information in routing, this
in the routing process, this document provides OTN technology document provides OTN technology specific encoding for use in GMPLS
specific encoding for OSPF-TE. OSPF-TE as defined in [RFC4203].
For a short overview of OTN evolution and implications of OTN For a short overview of OTN evolution and implications of OTN
requirements on GMPLS routing please refer to [OTN-FWK]. The requirements on GMPLS routing please refer to [OTN-FWK]. The
information model and an evaluation against the current solution are information model and an evaluation against the current solution are
provided in [OTN-INFO]. provided in [OTN-INFO].
The routing information for Optical Channel Layer (OCh) (i.e. Routing information for Optical Channel Layer (OCh) (i.e. wavelength)
wavelength) is out of the scope of this document. Please refer to is out of the scope of this document. Please refer to [RFC6163] and
[RFC6163] and [RFC6566] for further information. [RFC6566] for further information.
1.1. Terminology 1.1. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119]. document are to be interpreted as described in [RFC2119].
2. OSPF-TE Extensions 2. OSPF-TE Extensions
In terms of GMPLS based OTN networks, each OTUk can be viewed as a In terms of GMPLS based OTN networks, each OTUk can be viewed as a
skipping to change at page 4, line 48 skipping to change at page 3, line 48
Type Length Value (TLV) with several nested sub-TLVs to describe Type Length Value (TLV) with several nested sub-TLVs to describe
different attributes of a TE link. Two top-level TLVs are defined in different attributes of a TE link. Two top-level TLVs are defined in
[RFC3630]. (1) The Router Address TLV (referred to as the Node TLV) [RFC3630]. (1) The Router Address TLV (referred to as the Node TLV)
and (2) the TE link TLV. One or more sub-TLVs can be nested into the and (2) the TE link TLV. One or more sub-TLVs can be nested into the
two top-level TLVs. The sub-TLV set for the two top-level TLVs are two top-level TLVs. The sub-TLV set for the two top-level TLVs are
also defined in [RFC3630] and [RFC4203]. also defined in [RFC3630] and [RFC4203].
As discussed in [OTN-FWK] and [OTN-INFO], OSPF-TE must be extended so As discussed in [OTN-FWK] and [OTN-INFO], OSPF-TE must be extended so
to be able to advertise the termination and switching capabilities to be able to advertise the termination and switching capabilities
related to each different ODUj and ODUk/OTUk (Optical Transport Unit) related to each different ODUj and ODUk/OTUk (Optical Transport Unit)
and the advertisement of related multiplexing capabilities. This and the advertisement of related multiplexing capabilities. These
leads to the need to define a new Switching Capability value and capabilities are carried in the Interface Switching Capability
associated new Switching Capability for the Interface Switching Descriptor (ISCD) Switching Capability-specific information field
Capability Descriptor (ISCD). using formats defined in this document. As discussed in [swcaps-
update], the use of a technology specific Switching Capability-
specific information field necessitates the definition of a new
Switching Capability value and associated new Switching Capability.
In the following we will use ODUj to indicate a service type that is In the following we will use ODUj to indicate a service type that is
multiplexed into a higher order ODU, ODUk to indicate a higher order multiplexed into a higher order ODU, ODUk to indicate a higher order
ODU including an ODUj and ODUk/OTUk to indicate the layer mapped into ODU including an ODUj and ODUk/OTUk to indicate the layer mapped into
the OTUk. Moreover ODUj(S) and ODUk(S) are used to indicate ODUj and the OTUk. Moreover ODUj(S) and ODUk(S) are used to indicate ODUj and
ODUk supporting switching capability only, and the ODUj->ODUk format ODUk supporting switching capability only, and the ODUj->ODUk format
is used to indicate the ODUj into ODUk multiplexing capability. is used to indicate the ODUj into ODUk multiplexing capability.
This notation can be repeated as needed depending on the number of This notation can be repeated as needed depending on the number of
multiplexing levels. In the following the term "multiplexing tree" multiplexing levels. In the following the term "multiplexing tree"
skipping to change at page 5, line 36 skipping to change at page 4, line 39
ODU3 ODU2 ODU3 ODU2
\ / \ /
\ / \ /
\ / \ /
\ / \ /
ODU4 ODU4
The ODU4 is the root of the muxing tree, ODU3 and ODU2 are containers The ODU4 is the root of the muxing tree, ODU3 and ODU2 are containers
directly multiplexed into the server and then ODU2, ODU0 are the directly multiplexed into the server and then ODU2, ODU0 are the
leaves of the ODU3 branch, while ODUflex and ODU0 are the leaves of leaves of the ODU3 branch, while ODUflex and ODU0 are the leaves of
the ODU2 one. This means that on this traffic card it is possible to the ODU2 one. This means that it is possible to have the following
have the following multiplexing capabilities: multiplexing capabilities:
ODU2->ODU3->ODU4 ODU2->ODU3->ODU4
ODU0->ODU3->ODU4 ODU0->ODU3->ODU4
ODUflex->ODU2->ODU4 ODUflex->ODU2->ODU4
ODU0->ODU2->ODU4 ODU0->ODU2->ODU4
3. TE-Link Representation 3. TE-Link Representation
G.709 ODUk/OTUk Links are represented as TE-Links in GMPLS Traffic G.709 ODUk/OTUk Links are represented as TE-Links in GMPLS Traffic
Engineering Topology for supporting ODUj layer switching. These TE- Engineering Topology for supporting ODUj layer switching. These TE-
Links can be modeled in multiple ways. Links can be modeled in multiple ways.
OTUk physical Link(s) can be modeled as a TE-Link(s). The TE-Link is OTUk physical Link(s) can be modeled as a TE-Link(s). The OTUk-TE-
referred to as OTUk-TE-Link. The OTUk-TE-Link advertises ODUj Link advertises ODUj switching capacity. The advertised capacity
switching capacity. The advertised capacity could include ODUk could include ODUk switching capacity. Figure 1 below provides an
switching capacity. Figure-1 below provides an illustration of one illustration of one hop OTUk TE-links.
hop ODUk TE-links.
+-------+ +-------+ +-------+ +-------+ +-------+ +-------+
| OTN | | OTN | | OTN | | OTN | | OTN | | OTN |
|Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch | |Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch |
| A | | B | | C | | A | | B | | C |
+-------+ +-------+ +-------+ +-------+ +-------+ +-------+
|<-- TE-Link -->| |<-- TE-Link -->| |<-- TE-Link -->| |<-- TE-Link -->|
Figure 1: ODUk TE-Links Figure 1: OTUk TE-Links
It is possible to create TE-Links that span more than one hop by It is possible to create TE-Links that span more than one hop by
creating FA between non-adjacent nodes. Such TE-Links are also creating FAs between non-adjacent nodes (see Figure 2). As in the
termed ODUk-TE-Links. As in the one hop case, these types of ODUk- one hop case, these types of ODUk-TE-Links also advertise ODU
TE-Links also advertise ODUj switching capacity. The advertised switching capacity.
capacity could include ODUk switching capacity.
+-------+ +-------+ +-------+ +-------+ +-------+ +-------+
| OTN | | OTN | | OTN | | OTN | | OTN | | OTN |
|Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch | |Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch |
| A | | B | | C | | A | | B | | C |
+-------+ +-------+ +-------+ +-------+ +-------+ +-------+
ODUk Switched ODUk Switched
|<------------- ODUk Link ------------->| |<------------- ODUk Link ------------->|
|<-------------- TE-Link--------------->| |<-------------- TE-Link--------------->|
Figure 2: Multiple hop TE-Link Figure 2: Multiple hop TE-Link
4. ISCD format extensions 4. ISCD format extensions
The ISCD describes the switching capability of an interface The ISCD describes the switching capability of an interface and is
[RFC4202]. This document defines a new Switching Capability value defined in [RFC4203]. This document defines a new Switching
for OTN [G.709-2012] as follows: Capability value for OTN [G.709-2012] as follows:
Value Type Value Type
----- ---- ----- ----
110 (TBA by IANA) OTN-TDM capable (OTN-TDM) 110 (TBA by IANA) OTN-TDM capable (OTN-TDM)
When supporting the extensions defined in this document, the When supporting the extensions defined in this document, the
Switching Capability and Encoding values MUST be used as follows: Switching Capability and Encoding values MUST be used as follows:
- Switching Capability = OTN-TDM - Switching Capability = OTN-TDM
- Encoding Type = G.709 ODUk (Digital Path) [as defined in RFC4328] - Encoding Type = G.709 ODUk (Digital Path) [as defined in RFC4328]
Both for fixed and flexible ODUs the same switching type and encoding Both for fixed and flexible ODUs the same switching type and encoding
values MUST be used. When Switching Capability and Encoding fields values MUST be used. When Switching Capability and Encoding fields
are set to values as stated above, the Interface Switching Capability are set to values as stated above, the Interface Switching Capability
Descriptor MUST be interpreted as defined in [RFC4203]. Descriptor MUST be interpreted as defined in [RFC4203].
Maximum LSP Bandwidth Maximum LSP Bandwidth
The MAX LSP bandwidth field MUST be used according to [RFC4203]: i.e. The MAX LSP Bandwidth field is used according to [RFC4203]: i.e. 0 <=
0 <= Max LSP Bandwidth <= ODUk/OTUk and intermediate values are those MAX LSP Bandwidth <= ODUk/OTUk and intermediate values are those on
on the branch of OTN switching hierarchy supported by the interface. the branch of OTN switching hierarchy supported by the interface.
E.g. in the OTU4 link it could be possible to have ODU4 as MAX LSP E.g. in the OTU4 link it could be possible to have ODU4 as MAX LSP
Bandwidth for some priorities, ODU3 for others, ODU2 for some others Bandwidth for some priorities, ODU3 for others, ODU2 for some others
etc. The bandwidth unit MUST be in bytes per second and the encoding etc. The bandwidth unit is in bytes per second and the encoding MUST
MUST be in Institute of Electrical and Electronic Engineers (IEEE) be in Institute of Electrical and Electronic Engineers (IEEE)
floating point format. The discrete values for various ODUs is shown floating point format. The discrete values for various ODUs is shown
in the table below. in the table below.
+---------------------+------------------------------+-----------------+ +---------------------+------------------------------+-----------------+
| ODU Type | ODU nominal bit rate |Value in Byte/Sec| | ODU Type | ODU nominal bit rate |Value in Byte/Sec|
+---------------------+------------------------------+-----------------+ +---------------------+------------------------------+-----------------+
| ODU0 | 1 244 160 kbits/s | 0x4D1450C0 | | ODU0 | 1 244 160 kbits/s | 0x4D1450C0 |
| ODU1 | 239/238 x 2 488 320 kbit/s | 0x4D94F048 | | ODU1 | 239/238 x 2 488 320 kbit/s | 0x4D94F048 |
| ODU2 | 239/237 x 9 953 280 kbit/s | 0x4E959129 | | ODU2 | 239/237 x 9 953 280 kbit/s | 0x4E959129 |
| ODU3 | 239/236 x 39 813 120 kbit/s | 0X4F963367 | | ODU3 | 239/236 x 39 813 120 kbit/s | 0X4F963367 |
skipping to change at page 8, line 28 skipping to change at page 7, line 28
| ODUflex for GFP-F | | MAX LSP | | ODUflex for GFP-F | | MAX LSP |
|Mapped client signal | Configured bit rate | BANDWIDTH | |Mapped client signal | Configured bit rate | BANDWIDTH |
| | | | | | | |
| | | | | | | |
|ODU flex resizable | Configured bit rate | MAX LSP | |ODU flex resizable | Configured bit rate | MAX LSP |
| | | BANDWIDTH | | | | BANDWIDTH |
+---------------------+------------------------------+-----------------+ +---------------------+------------------------------+-----------------+
A single ISCD MAY be used for the advertisement of unbundled or A single ISCD MAY be used for the advertisement of unbundled or
bundled links supporting homogeneous multiplexing hierarchies and the bundled links supporting homogeneous multiplexing hierarchies and the
same Tributary Slot Granularity (TSG). A different ISCD MUST be used same TS (Tributary Slot) granularity. A different ISCD MUST be used
for each different muxing hierarchy (muxing tree in the following for each different muxing hierarchy (muxing tree in the following
examples) and different TSG supported within the TE Link. examples) and different TS granularity supported within the TE Link.
Component links with different hierarchies or TSG MUST NOT be
bundled.
4.1. Switch Capability Specific Information 4.1. Switching Capability Specific Information
The technology specific part of the OTN ISCD may include a variable The technology specific part of the OTN-TDM ISCD may include a
number of sub-TLVs called Bandwidth sub-TLVs. Each sub-TLV is variable number of sub-TLVs called Bandwidth sub-TLVs. Each sub-TLV
encoded with the TLV header as defined in [RFC3630] section 2.3.2. is encoded with the TLV header as defined in [RFC3630] section 2.3.2.
The muxing hierarchy tree MUST be encoded as an order independent The muxing hierarchy tree MUST be encoded as an order independent
list. Two types of Bandwidth TLV are defined (TBA by IANA): list. Two types of Bandwidth TLV are defined (TBA by IANA). Note
that type values are defined in this document and not in [RFC3630].
- Type 1 - Unreserved Bandwidth for fixed containers - Type 1 - Unreserved Bandwidth for fixed containers
- Type 2 - Unreserved/MAX LSP Bandwidth for flexible containers - Type 2 - Unreserved/MAX LSP Bandwidth for flexible containers
The SCSI MUST include one Type 1 sub-TLV for any fixed container and The Switching Capability-specific information (SCSI) MUST include one
one Type 2 sub-TLV for any variable container. Type 1 sub-TLV for each fixed container and one Type 2 sub-TLV for
each variable container. Each container type is identified by a
Signal Type. Signal Type values are defined in [OTN-SIG].
With respect to ODUflex, three different signal types are allowed: 20 With respect to ODUflex, three different signal types are allowed: 20
- ODUflex Constant Bit Rate (CBR), 21 - ODUflex Generic Framing - ODUflex Constant Bit Rate (CBR), 21 - ODUflex Generic Framing
Procedure-Frame mapped (GFP-F) resizable and 22 - ODUflex (GFP-F) non Procedure-Frame mapped (GFP-F) resizable and 22 - ODUflex (GFP-F) non
resizable. Each MUST always be advertised in separate Type 2 TLVs as resizable. Each MUST always be advertised in separate Type 2 TLVs as
each uses different adaptation functions [G.805]. In the case that each uses different adaptation functions [G.805]. In the case that
both GFP-F resizable and non resizable (i.e. 21 and 22) are both GFP-F resizable and non resizable (i.e. 21 and 22) are
supported, only Signal Type 21 SHALL be advertised as this type also supported, only Signal Type 21 SHALL be advertised as this type also
implies support for type 22 adaptation. implies support for type 22 adaptation.
4.1.1. Switch Capability Specific Information for fixed containers 4.1.1. Switching Capability Specific Information for fixed containers
The format of the Bandwidth TLV for fixed containers is depicted in The format of the Bandwidth TLV for fixed containers is depicted in
the following figure: the following figure:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length | | Type = 1 (Unres-fix) | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Signal type | Num of stages |T|S| TSG | Res | Priority | | Signal type | Num of stages |T|S| TSG | Res | Priority |
skipping to change at page 9, line 35 skipping to change at page 8, line 35
| Unreserved ODUj at Prio 0 | ..... | | Unreserved ODUj at Prio 0 | ..... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved ODUj at Prio 7 | Unreserved Padding | | Unreserved ODUj at Prio 7 | Unreserved Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Bandwidth TLV - Type 1 - Figure 3: Bandwidth TLV - Type 1 -
The values of the fields shown in figure 4 are explained in section The values of the fields shown in figure 4 are explained in section
4.1.3. 4.1.3.
4.1.2. Switch Capability Specific Information for variable containers 4.1.2. Switching Capability Specific Information for variable
containers
The format of the Bandwidth TLV for variable containers is depicted The format of the Bandwidth TLV for variable containers is depicted
in the following figure: in the following figure:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 (Unres/MAX-var) | Length | | Type = 2 (Unres/MAX-var) | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Signal type | Num of stages |T|S| TSG | Res | Priority | | Signal type | Num of stages |T|S| TSG | Res | Priority |
skipping to change at page 10, line 32 skipping to change at page 9, line 32
| ... | | ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 7 | | MAX LSP Bandwidth at priority 7 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: Bandwidth TLV - Type 2 - Figure 4: Bandwidth TLV - Type 2 -
The values of the fields shown in figure 4 are explained in section The values of the fields shown in figure 4 are explained in section
4.1.3. 4.1.3.
4.1.3. Switch Capability Specific Information - Field values and 4.1.3. Switching Capability Specific Information - Field values and
explanation explanation
The fields in the Bandwidth TLV MUST be filled as follows: The fields in the Bandwidth TLV MUST be filled as follows:
- Signal Type (8 bits): Indicates the ODU type being advertised. - Signal Type (8 bits): Indicates the ODU type being advertised.
Values are defined in [OTN-SIG]. Values are defined in [OTN-SIG].
- Number of stages (8 bits): This field indicates the number of - Number of stages (8 bits): This field indicates the number of
multiplexing stages used to transport the indicated signal type. multiplexing stages used to transport the indicated signal type.
It MUST be set to the number of stages represented in the TLV. It MUST be set to the number of stages represented in the TLV.
skipping to change at page 11, line 12 skipping to change at page 10, line 12
MUST be set, while when the signal type cannot be terminated T MUST be set, while when the signal type cannot be terminated T
MUST be cleared. MUST be cleared.
- S Flag (bit 18): Indicates whether the advertised bandwidth - S Flag (bit 18): Indicates whether the advertised bandwidth
can be switched. When the signal type can be switched S MUST can be switched. When the signal type can be switched S MUST
be set, while when the signal type cannot be switched S MUST be be set, while when the signal type cannot be switched S MUST be
cleared. cleared.
The value 0 in both T and S bits MUST NOT be used. The value 0 in both T and S bits MUST NOT be used.
- TSG: Tributary Slot Granularity (3 bits): Used for the - TS Granularity: Tributary Slot Granularity (3 bits): Used for
advertisement of the supported Tributary Slot granularity. The the advertisement of the supported Tributary Slot granularity.
following values MUST be used: The following values MUST be used:
- 0 - Ignored - 0 - Ignored
- 1 - 1.25 Gbps/2.5Gbps - 1 - 1.25Gbps/2.5Gbps
- 2 - 2.5 Gbps only - 2 - 2.5Gbps only
- 3 - 1.25 Gbps only - 3 - 1.25Gbps only
- 4-7 - Reserved - 4-7 - Reserved
A value of 1 MUST be used on interfaces which are configured to A value of 1 MUST be used on interfaces which are configured to
support the fall back procedures defined in [G.798-a2]. A value support the fall back procedures defined in [G.798-a2]. A value
of 2 MUST be used on interfaces that only support 2.5 Gbps time of 2 MUST be used on interfaces that only support 2.5Gbps time
slots, such as [RFC4328] interfaces. A value of 3 MUST be used on slots, such as [RFC4328] interfaces. A value of 3 MUST be used on
interfaces that are configured to only support 1.25 Gbps time interfaces that are configured to only support 1.25Gbps time
slots. A value of 0 MUST be used for non multiplexed signal types slots. A value of 0 MUST be used for non multiplexed signal types
(i.e. a non OTN client). (i.e. a non OTN client).
- Res (3 bits): reserved bits. MUST be set to 0 and ignored on - Res (3 bits): reserved bits. MUST be set to 0 and ignored on
receipt. receipt.
- Priority (8 bits): a bitmap used to indicate which priorities - Priority (8 bits): a bitmap used to indicate which priorities
are being advertised. The bitmap is in ascending order, with the are being advertised. The bitmap is in ascending order, with the
leftmost bit representing priority level 0 (i.e. the highest) and leftmost bit representing priority level 0 (i.e. the highest) and
the rightmost bit representing priority level 7 (i.e. the lowest). the rightmost bit representing priority level 7 (i.e. the lowest).
skipping to change at page 12, line 36 skipping to change at page 11, line 36
When the number of priorities is odd, the Unreserved Padding field When the number of priorities is odd, the Unreserved Padding field
MUST be included. When the number of priorities is even, the MUST be included. When the number of priorities is even, the
Unreserved Padding MUST be omitted. Unreserved Padding MUST be omitted.
- Unreserved Bandwidth (32 bits): This field indicates the - Unreserved Bandwidth (32 bits): This field indicates the
Unreserved Bandwidth at a particular priority level. This field Unreserved Bandwidth at a particular priority level. This field
MUST be set to the bandwidth, in bits/s in IEEE floating point MUST be set to the bandwidth, in bits/s in IEEE floating point
format, available at the indicated Signal Type for a particular format, available at the indicated Signal Type for a particular
priority level. One field MUST be present for each bit set in the priority level. One field MUST be present for each bit set in the
Priority field, and is ordered to match the Priority field. Priority field, and is ordered to match the Priority field.
Fields MUST not be present for priority levels that are not Fields MUST NOT be present for priority levels that are not
indicated in the Priority field.This field is REQUIRED for Type 2 indicated in the Priority field.
(variable container) TLVs, and MUST NOT be used for Type 1 TLVs.
- Maximum LSP Bandwidth (32 bit): This field indicates the maximum - Maximum LSP Bandwidth (32 bit): This field indicates the maximum
bandwidth that can be allocated for a single LSP at a particular bandwidth that can be allocated for a single LSP at a particular
priority level. This field MUST be set to the maximum bandwidth, priority level. This field MUST be set to the maximum bandwidth,
in bits/s in IEEE floating point format, available to a single LSP in bits/s in IEEE floating point format, available to a single LSP
at the indicated Signal Type for a particular priority level. One at the indicated Signal Type for a particular priority level. One
field MUST be present for each bit set in the Priority field, and field MUST be present for each bit set in the Priority field, and
is ordered to match the Priority field. Fields MUST NOT be is ordered to match the Priority field. Fields MUST NOT be
present for priority levels that are not indicated in the Priority present for priority levels that are not indicated in the Priority
field. The advertisement of the MAX LSP bandwidth MUST take into field. The advertisement of the MAX LSP Bandwidth MUST take into
account HO OPUk bit rate tolerance and be calculated according to account HO OPUk bit rate tolerance and be calculated according to
the following formula: the following formula:
Max LSP BW = (# available TS) * (ODTUk.ts nominal bit rate) * Max LSP BW = (# available TSs) * (ODTUk.ts nominal bit rate) *
(1-HO OPUk bit rate tolerance) (1-HO OPUk bit rate tolerance)
5. Examples 5. Examples
The examples in the following pages are not normative and are not The examples in the following pages are not normative and are not
intended to imply or mandate any specific implementation. intended to imply or mandate any specific implementation.
5.1. MAX LSP Bandwidth fields in the ISCD 5.1. MAX LSP Bandwidth fields in the ISCD
This example shows how the MAX LSP Bandwidth fields of the ISCD are This example shows how the MAX LSP Bandwidth fields of the ISCD are
skipping to change at page 13, line 28 skipping to change at page 12, line 28
priorities 0,2,4,7 and muxing hierarchy ODU1->ODU2->ODU3->ODU4. priorities 0,2,4,7 and muxing hierarchy ODU1->ODU2->ODU3->ODU4.
At time T0, with the link completely free, the advertisement would At time T0, with the link completely free, the advertisement would
be: be:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) | | SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 0 = 100Gbps | | MAX LSP Bandwidth at priority 0 = 100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 1 = 0 | | MAX LSP Bandwidth at priority 1 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 2 = 100Gbps | | MAX LSP Bandwidth at priority 2 = 100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 3 = 0 | | MAX LSP Bandwidth at priority 3 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 4 = 100Gbps | | MAX LSP Bandwidth at priority 4 = 100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 5 = 0 | | MAX LSP Bandwidth at priority 5 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 6 = 0 | | MAX LSP Bandwidth at priority 6 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 7 = 100Gbps | | MAX LSP Bandwidth at priority 7 = 100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Switch Capability Specific Information | | Switching Capability Specific Information |
| (variable length) | | (variable length) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: Example 1 - MAX LSP Bandwidth fields in the ISCD @T0 Figure 5: Example 1 - MAX LSP Bandwidth fields in the ISCD @T0
At time T1 an ODU3 at priority 2 is set-up, so for priority 0 the MAX At time T1 an ODU3 at priority 2 is set-up, so for priority 0 the MAX
LSP Bandwidth is still equal to the ODU4 bandwidth, while for LSP Bandwidth is still equal to the ODU4 bandwidth, while for
priorities from 2 to 7 (excluding the non supported ones) the MAX LSP priorities from 2 to 7 (excluding the non supported ones) the MAX LSP
Bandwidth is equal to ODU3, as no more ODU4s are available and the Bandwidth is equal to ODU3, as no more ODU4s are available and the
next supported ODUj in the hierarchy is ODU3.The advertisement is next supported ODUj in the hierarchy is ODU3.The advertisement is
updated as follows: updated as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) | | SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 0 = 100Gbps | | MAX LSP Bandwidth at priority 0 = 100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 1 = 0 | | MAX LSP Bandwidth at priority 1 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 2 = 40Gbps | | MAX LSP Bandwidth at priority 2 = 40Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 3 = 0 | | MAX LSP Bandwidth at priority 3 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 4 = 40Gbps | | MAX LSP Bandwidth at priority 4 = 40Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 5 = 0 | | MAX LSP Bandwidth at priority 5 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 6 = 0 | | MAX LSP Bandwidth at priority 6 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 7 = 40Gbps | | MAX LSP Bandwidth at priority 7 = 40Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Switch Capability Specific Information | | Switching Capability Specific Information |
| (variable length) | | (variable length) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: Example 1 - MAX LSP Bandwidth fields in the ISCD @T1 Figure 6: Example 1 - MAX LSP Bandwidth fields in the ISCD @T1
At time T2 an ODU2 at priority 4 is set-up. The first ODU3 is no At time T2 an ODU2 at priority 4 is set-up. The first ODU3 is no
longer available since T1 as it was kept by the ODU3 LSP, while the longer available since T1 as it was kept by the ODU3 LSP, while the
second is no more available and just 3 ODU2 are left in it. ODU2 is second is no more available and just 3 ODU2 are left in it. ODU2 is
now the MAX LSP bandwidth for priorities higher than 4. The now the MAX LSP Bandwidth for priorities higher than 4. The
advertisement is updated as follows: advertisement is updated as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) | | SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 0 = 100Gbps | | MAX LSP Bandwidth at priority 0 = 100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 1 = 0 | | MAX LSP Bandwidth at priority 1 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 2 = 40Gbps | | MAX LSP Bandwidth at priority 2 = 40Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 3 = 0 | | MAX LSP Bandwidth at priority 3 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 4 = 10Gbps | | MAX LSP Bandwidth at priority 4 = 10Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 5 = 0 | | MAX LSP Bandwidth at priority 5 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 6 = 0 | | MAX LSP Bandwidth at priority 6 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 7 = 10Gbps | | MAX LSP Bandwidth at priority 7 = 10Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Switch Capability Specific Information | | Switching Capability Specific Information |
| (variable length) | | (variable length) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: Example 1 - MAX LSP Bandwidth fields in the ISCD @T2 Figure 7: Example 1 - MAX LSP Bandwidth fields in the ISCD @T2
5.2. Example of T,S and TSG utilization 5.2. Example of T,S and TS granularity utilization
In this example an interface with Tributary Slot Type 1.25 Gbps and In this example an interface with Tributary Slot Type 1.25Gbps and
fallback procedure enabled is considered (TSG=1). It supports the fallback procedure enabled is considered (TS granularity=1). It
simple ODU1->ODU2->ODU3 hierarchy and priorities 0 and 3. Suppose supports the simple ODU1->ODU2->ODU3 hierarchy and priorities 0 and
that in this interface the ODU3 signal type can be both switched or 3. Suppose that in this interface the ODU3 signal type can be both
terminated, the ODU2 can only be terminated and the ODU1 switched switched or terminated, the ODU2 can only be terminated and the ODU1
only. Please note that since the ODU1 is not being advertised to switched only. Please note that since the ODU1 is not being
support ODU0 the value of is "ignored" (TSG=0). For the advertised to support ODU0 the value of is "ignored" (TS
advertisement of the capabilities of such interface a single ISCD is granularity=0). For the advertisement of the capabilities of such
used and its format is as follows: interface a single ISCD is used and its format is as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 | | Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU1 | #stages= 2 |T0|S1| 0 |0 0 0|1|0|0|1|0|0|0|0| |Sig type=ODU1 | #stages= 2 |T0|S1| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) | | Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 16, line 31 skipping to change at page 15, line 31
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 | | Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 | | Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 0 |T1|S1| 1 |0 0 0|1|0|0|1|0|0|0|0| |Sig type=ODU3 | #stages= 0 |T1|S1| 1 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 | | Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: Example 2 - TSG, T and S utilization Figure 8: Example 2 - TS granularity, T and S utilization
5.2.1. Example of different TSGs 5.2.1. Example of different TS Granularities
In this example two interfaces with homogeneous hierarchies but In this example two interfaces with homogeneous hierarchies but
different Tributary Slot Types are considered. The first one different Tributary Slot Types are considered. The first one
supports a [RFC4328] interface (TSG=2) while the second one a G.709- supports a [RFC4328] interface (TS granularity=2) while the second
2012 interface with fallback procedure disabled (TSG=3). Both of one a G.709-2012 interface with fallback procedure disabled (TS
them support ODU1->ODU2->ODU3 hierarchy and priorities 0 and 3. T granularity=3). Both of them support ODU1->ODU2->ODU3 hierarchy and
and S bits values are not relevant to this example. For the priorities 0 and 3. T and S bits values are not relevant to this
advertisement of the capabilities of such interfaces two different example. For the advertisement of the capabilities of such
ISCDs are used and the format of their SCSIs is as follows: interfaces two different ISCDs are used and the format of their SCSIs
is as follows:
SCSI of ISCD 1 - TSG=2 SCSI of ISCD 1 - TS granularity=2
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 | | Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU1 | #stages= 2 |T0|S1| 0 |0 0 0|1|0|0|1|0|0|0|0| |Sig type=ODU1 | #stages= 2 |T0|S1| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) | | Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU1 at Prio 0 | Unres ODU1 at Prio 3 | | Unres ODU1 at Prio 0 | Unres ODU1 at Prio 3 |
skipping to change at page 17, line 24 skipping to change at page 16, line 25
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 | | Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 | | Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 0 |T1|S1| 2 |0 0 0|1|0|0|1|0|0|0|0| |Sig type=ODU3 | #stages= 0 |T1|S1| 2 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 | | Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
SCSI of ISCD 2 - TSG=3 SCSI of ISCD 2 - TS granularity=3
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 | | Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU1 | #stages= 2 |T0|S1| 0 |0 0 0|1|0|0|1|0|0|0|0| |Sig type=ODU1 | #stages= 2 |T0|S1| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) | | Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU1 at Prio 0 | Unres ODU1 at Prio 3 | | Unres ODU1 at Prio 0 | Unres ODU1 at Prio 3 |
skipping to change at page 18, line 4 skipping to change at page 17, line 4
| Stage#1=ODU3 | Padding (all zeros) | | Stage#1=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 | | Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 | | Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 0 |T1|S1| 3 |0 0 0|1|0|0|1|0|0|0|0| |Sig type=ODU3 | #stages= 0 |T1|S1| 3 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 | | Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: Example 2.1 - Different TSGs utilization Figure 9: Example 2.1 - Different TS Granularities utilization
A particular case in which hierarchies with the same muxing tree but A particular case in which hierarchies with the same muxing tree but
with different exported TSG MUST be considered as non homogenous with different exported TS granularity MUST be considered as non
hierarchies is the case in which an H-LPS and the client LSP are homogenous hierarchies is the case in which an H-LPS and the client
terminated on the same egress node. What can happen is that a loose LSP are terminated on the same egress node. What can happen is that
Explicit Route Object (ERO) is used at the hop where the signaled LSP a loose Explicit Route Object (ERO) is used at the hop where the
is nested into the Hierarchical-LSP (H-LSP) (penultimate hop of the signaled LSP is nested into the Hierarchical-LSP (H-LSP) (penultimate
LSP). hop of the LSP).
In the following figure, node C receives from A a loose ERO towards In the following figure, node C receives from A a loose ERO towards
node E and must choose between the ODU2 H-LSP on if1 or the one on node E and must choose between the ODU2 H-LSP on if1 or the one on
if2. In case the H-LSP on if1 exports a TS=1.25Gbps and if2 a if2. In case the H-LSP on if1 exports a TS=1.25Gbps and if2 a
TS=2.5Gbps and the service LSP being signaled needs a 1.25Gbps TS=2.5Gbps and the service LSP being signaled needs a 1.25Gbps
tributary slot, only the H-LSP on if1 can be used to reach node E. tributary slot, only the H-LSP on if1 can be used to reach node E.
For further details please see section 4.1 of the [OTN-INFO]. For further details please see section 4.1 of the [OTN-INFO].
ODU0-LSP ODU0-LSP
..........................................................+ ..........................................................+
skipping to change at page 18, line 42 skipping to change at page 17, line 42
... Service LSP ... Service LSP
--- H-LSP --- H-LSP
Figure 10: Example - Service LSP and H-LSP terminating on the same Figure 10: Example - Service LSP and H-LSP terminating on the same
node node
5.3. Example of ODUflex advertisement 5.3. Example of ODUflex advertisement
In this example the advertisement of an ODUflex->ODU3 hierarchy is In this example the advertisement of an ODUflex->ODU3 hierarchy is
shown. In case of ODUflex advertisement the MAX LSP bandwidth needs shown. In case of ODUflex advertisement the MAX LSP Bandwidth needs
to be advertised and in some cases also information about the to be advertised and in some cases also information about the
Unreserved bandwidth could be useful. The amount of Unreserved Unreserved bandwidth could be useful. The amount of Unreserved
bandwidth does not give a clear indication of how many ODUflex LSP bandwidth does not give a clear indication of how many ODUflex LSP
can be set up either at the MAX LSP Bandwidth or at different rates, can be set up either at the MAX LSP Bandwidth or at different rates,
as it gives no information about the spatial allocation of the free as it gives no information about the spatial allocation of the free
TSs. TSs.
An indication of the amount of Unreserved bandwidth could be useful An indication of the amount of Unreserved bandwidth could be useful
during the path computation process, as shown in the following during the path computation process, as shown in the following
example. Supposing there are two TE-links (A and B) with MAX LSP example. Supposing there are two TE-links (A and B) with MAX LSP
Bandwidth equal to 10 Gbps each. In case 50Gbps of Unreserved Bandwidth equal to 10 Gbps each. In case 50Gbps of Unreserved
Bandwidth are available on Link A, 10Gbps on Link B and 3 ODUflex Bandwidth are available on Link A, 10Gbps on Link B and 3 ODUflex
LSPs of 10 GBps each, have to be restored, for sure only one can be LSPs of 10 GBps each, have to be restored, for sure only one can be
restored along Link B and it is probable (but not sure) that two of restored along Link B and it is probable (but not sure) that two of
them can be restored along Link A. T, S and TSG fields are not them can be restored along Link A. T, S and TS granularity fields are
relevant to this example. not relevant to this example.
In the case of ODUflex advertisement the Type 2 Bandwidth TLV is In the case of ODUflex advertisement the Type 2 Bandwidth TLV is
used. used.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 (Unres/MAX-var) | Length = 72 | | Type = 2 (Unres/MAX-var) | Length = 72 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S. type=ODUflex| #stages= 1 |T|S| TSG |0 0 0| Priority(8) | |S. type=ODUflex| #stages= 1 |T|S| TSG |0 0 0| Priority(8) |
skipping to change at page 21, line 11 skipping to change at page 20, line 11
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 11: Example 3 - ODUflex advertisement Figure 11: Example 3 - ODUflex advertisement
5.4. Example of single stage muxing 5.4. Example of single stage muxing
Supposing there is 1 OTU4 component link supporting single stage Supposing there is 1 OTU4 component link supporting single stage
muxing of ODU1, ODU2, ODU3 and ODUflex, the supported hierarchy can muxing of ODU1, ODU2, ODU3 and ODUflex, the supported hierarchy can
be summarized in a tree as in the following figure. For sake of be summarized in a tree as in the following figure. For sake of
simplicity we assume that also in this case only priorities 0 and 3 simplicity we assume that also in this case only priorities 0 and 3
are supported. T, S and TSG fields are not relevant to this example. are supported. T, S and TS granularity fields are not relevant to
this example.
ODU1 ODU2 ODU3 ODUflex ODU1 ODU2 ODU3 ODUflex
\ \ / / \ \ / /
\ \ / / \ \ / /
\ \/ / \ \/ /
ODU4 ODU4
and the related SCSIs as follows: and the related SCSIs as follows:
0 1 2 3 0 1 2 3
skipping to change at page 25, line 7 skipping to change at page 24, line 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 0 =10Gbps | | MAX LSP Bandwidth at priority 0 =10Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 3 =10Gbps | | MAX LSP Bandwidth at priority 3 =10Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 13: Example 5 - Multi stage muxing - Unbundled link Figure 13: Example 5 - Multi stage muxing - Unbundled link
5.6. Example of multi stage muxing - Bundled links 5.6. Example of multi stage muxing - Bundled links
In this example 2 OTU4 component links with the same supported TSG In this example 2 OTU4 component links with the same supported TS
and homogeneous muxing hierarchies are considered. The following granularity and homogeneous muxing hierarchies are considered. The
muxing capabilities trees are supported: following muxing capabilities trees are supported:
Component Link#1 Component Link#2 Component Link#1 Component Link#2
ODU2 ODU0 ODU2 ODU0 ODU2 ODU0 ODU2 ODU0
\ / \ / \ / \ /
| | | |
ODU3 ODU3 ODU3 ODU3
| | | |
ODU4 ODU4 ODU4 ODU4
Considering only supported priorities 0 and 3, the advertisement is Considering only supported priorities 0 and 3, the advertisement is
as follows (T, S and TSG fields are not relevant to this example): as follows (T, S and TS granularity fields are not relevant to this
example):
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 | | Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU4 | #stages= 0 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| |Sig type=ODU4 | #stages= 0 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU4 at Prio 0 =2 | Unres ODU4 at Prio 3 =2 | | Unres ODU4 at Prio 0 =2 | Unres ODU4 at Prio 3 =2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 26, line 43 skipping to change at page 25, line 43
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) | | Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU0 at Prio 0 =128 | Unres ODU0 at Prio 3 =128 | | Unres ODU0 at Prio 0 =128 | Unres ODU0 at Prio 3 =128 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 14: Example 6 - Multi stage muxing - Bundled links Figure 14: Example 6 - Multi stage muxing - Bundled links
5.7. Example of component links with non homogeneous hierarchies 5.7. Example of component links with non homogeneous hierarchies
In this example 2 OTU4 component links with the same supported TSG In this example 2 OTU4 component links with the same supported TS
and non homogeneous muxing hierarchies are considered. The following granularity and non homogeneous muxing hierarchies are considered.
muxing capabilities trees are supported: The following muxing capabilities trees are supported:
Component Link#1 Component Link#2 Component Link#1 Component Link#2
ODU2 ODU0 ODU1 ODU0 ODU2 ODU0 ODU1 ODU0
\ / \ / \ / \ /
| | | |
ODU3 ODU2 ODU3 ODU2
| | | |
ODU4 ODU4 ODU4 ODU4
Considering only supported priorities 0 and 3, the advertisement uses Considering only supported priorities 0 and 3, the advertisement uses
two different ISCDs, one for each hierarchy (T, S and TSG fields are two different ISCDs, one for each hierarchy (T, S and TS granularity
not relevant to this example). In the following figure, the SCSI of fields are not relevant to this example). In the following figure,
each ISCD is shown: the SCSI of each ISCD is shown:
SCSI of ISCD 1 - Component Link#1 SCSI of ISCD 1 - Component Link#1
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 | | Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU4 | #stages= 0 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| |Sig type=ODU4 | #stages= 0 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 29, line 12 skipping to change at page 28, line 12
All implementations of this document MAY support also advertisement All implementations of this document MAY support also advertisement
as defined in [RFC4328]. When nodes support both advertisement as defined in [RFC4328]. When nodes support both advertisement
methods, implementations MUST support the configuration of which methods, implementations MUST support the configuration of which
advertisement method is followed. The choice of which is used is advertisement method is followed. The choice of which is used is
based on policy and is out of scope of the document. This enables based on policy and is out of scope of the document. This enables
nodes following each method to identify similar supporting nodes and nodes following each method to identify similar supporting nodes and
compute paths using only the appropriate nodes. compute paths using only the appropriate nodes.
7. Security Considerations 7. Security Considerations
This document, as [RFC4203], specifies the contents of Opaque LSAs in This document extends [RFC4203]. As with[RFC4203], it specifies the
OSPFv2. As Opaque LSAs are not used for SPF computation or normal contents of Opaque LSAs in OSPFv2. As Opaque LSAs are not used for
routing, the extensions specified here have no direct effect on IP SPF computation or normal routing, the extensions specified here have
routing. Tampering with GMPLS TE LSAs may have an effect on the no direct effect on IP routing. Tampering with GMPLS TE LSAs may
underlying transport (optical and/or SONET-SDH) network. [RFC3630] have an effect on the underlying transport (optical and/or SONET-SDH)
suggests mechanisms such as [RFC2154] to protect the transmission of network. [RFC3630] suggests mechanisms such as [RFC2154] to protect
this information, and those or other mechanisms should be used to the transmission of this information, and those or other mechanisms
secure and/or authenticate the information carried in the Opaque should be used to secure and/or authenticate the information carried
LSAs. in the Opaque LSAs.
For security threats, defensive techniques, monitoring/detection/ For security threats, defensive techniques, monitoring/detection/
reporting of security attacks and requirements please refer to reporting of security attacks and requirements please refer to
[RFC5920] . [RFC5920] .
8. IANA Considerations 8. IANA Considerations
Upon approval of this document, IANA will make the assignment in the Upon approval of this document, IANA will make the assignment in the
"Switching Types" section of the "GMPLS Signaling Parameters" "Switching Types" section of the "GMPLS Signaling Parameters"
registry located at registry located at
http://www.iana.org/assignments/gmpls-sig-parameters: http://www.iana.org/assignments/gmpls-sig-parameters:
Value Type Reference Value Name Reference
--------- -------------------------- ---------- --------- -------------------------- ----------
110 (*) OTN-TDM capable (OTN-TDM) [This.I-D] 110 (*) OTN-TDM capable (OTN-TDM) [This.I-D]
(*) Suggested value (*) Suggested value
This document defines 2 new TLVs that are carried in Interface This document defines 2 new TLVs that are carried in Interface
Switching Capability Descriptors [RFC4203] with Signal Type OTN-TDM. Switching Capability Descriptors [RFC4203] with Signal Type OTN-TDM.
Each TLV includes a 16-bit type identifier (the T-field). The same Each TLV includes a 16-bit type identifier (the T-field). The same
T-field values are applicable to the new sub-TLV. T-field values are applicable to the new sub-TLV.
Upon approval of this document, IANA will create and maintain a new Upon approval of this document, IANA will create and maintain a new
registry, the "sub-TLVs of the OTN-TDM Interface Switching Capability registry, the "Types for sub-TLVs of OTN-TDM SCSI (Switch Capability
Descriptor TLV" registry under the "Open Shortest Path First (OSPF) Specific Information)" registry under the "Open Shortest Path First
Traffic Engineering TLVs" registry, see http://www.iana.org/ (OSPF) Traffic Engineering TLVs" registry, see http://www.iana.org/
assignments/ospf-traffic-eng-tlvs/ospf-traffic-eng-tlvs.xml, with the assignments/ospf-traffic-eng-tlvs/ospf-traffic-eng-tlvs.xml, with the
TLV types as follows: TLV types as follows:
This document defines new TLV types as follows: This document defines new TLV types as follows:
- TLV Type = 1 Value Sub-TLV Reference
- TLV Name = Unreserved Bandwidth for fixed containers --------- -------------------------- ----------
- allowed on ISCD sub-TLV 0 Reserved [This.I-D]
1 Unreserved Bandwidth for [This.I-D]
- TLV Type = 2 fixed containers
- TLV Name = Unreserved Bandwidth for fixed containers 2 Unreserved/MAX Bandwidth for [This.I-D]
- allowed on ISCD sub-TLV flexible containers
New TLV type values may be allocated only by an IETF Consensus Types are to be assigned via Standards Action as defined in
action. The request Registration Procedures are Standards Action. [RFC5226].
9. Contributors 9. Contributors
Xiaobing Zi, Huawei Technologies Xiaobing Zi, Huawei Technologies
Email: zixiaobing@huawei.com Email: zixiaobing@huawei.com
Francesco Fondelli, Ericsson Francesco Fondelli, Ericsson
Email: francesco.fondelli@ericsson.com Email: francesco.fondelli@ericsson.com
skipping to change at page 32, line 14 skipping to change at page 31, line 14
10. Acknowledgements 10. Acknowledgements
The authors would like to thank Fred Gruman and Lou Berger for the The authors would like to thank Fred Gruman and Lou Berger for the
precious comments and suggestions. precious comments and suggestions.
11. References 11. References
11.1. Normative References 11.1. Normative References
[G.709-2012]
ITU-T, "Draft revised G.709, version 4", consented
by ITU-T in 2012.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997. Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering [RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
(TE) Extensions to OSPF Version 2", RFC 3630, (TE) Extensions to OSPF Version 2", RFC 3630,
September 2003. September 2003.
[RFC4202] Kompella, K. and Y. Rekhter, "Routing Extensions in [RFC4202] Kompella, K. and Y. Rekhter, "Routing Extensions in
Support of Generalized Multi-Protocol Label Switching Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 4202, October 2005. (GMPLS)", RFC 4202, October 2005.
skipping to change at page 32, line 35 skipping to change at page 31, line 39
[RFC4203] Kompella, K. and Y. Rekhter, "OSPF Extensions in Support [RFC4203] Kompella, K. and Y. Rekhter, "OSPF Extensions in Support
of Generalized Multi-Protocol Label Switching (GMPLS)", of Generalized Multi-Protocol Label Switching (GMPLS)",
RFC 4203, October 2005. RFC 4203, October 2005.
[RFC4328] Papadimitriou, D., "Generalized Multi-Protocol Label [RFC4328] Papadimitriou, D., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Extensions for G.709 Optical Switching (GMPLS) Signaling Extensions for G.709 Optical
Transport Networks Control", RFC 4328, January 2006. Transport Networks Control", RFC 4328, January 2006.
11.2. Informative References 11.2. Informative References
[G.709-2012]
ITU-T, "Draft revised G.709, version 4", consented
by ITU-T in 2012.
[OTN-FWK] F.Zhang, D.Li, H.Li, S.Belotti, D.Ceccarelli, "Framework [OTN-FWK] F.Zhang, D.Li, H.Li, S.Belotti, D.Ceccarelli, "Framework
for GMPLS and PCE Control of G.709 Optical Transport for GMPLS and PCE Control of G.709 Optical Transport
networks, work in progress networks, work in progress
draft-ietf-ccamp-gmpls-g709-framework-11", November 2012. draft-ietf-ccamp-gmpls-g709-framework-13", June 2013.
[OTN-INFO] [OTN-INFO]
S.Belotti, P.Grandi, D.Ceccarelli, D.Caviglia, F.Zhang, S.Belotti, P.Grandi, D.Ceccarelli, D.Caviglia, F.Zhang,
D.Li, "Information model for G.709 Optical Transport D.Li, "Information model for G.709 Optical Transport
Networks (OTN), work in progress Networks (OTN), work in progress
draft-ietf-ccamp-otn-g709-info-model-05", November 2012. draft-ietf-ccamp-otn-g709-info-model-09", June 2013.
[OTN-SIG] F.Zhang, G.Zhang, S.Belotti, D.Ceccarelli, K.Pithewan, [OTN-SIG] F.Zhang, G.Zhang, S.Belotti, D.Ceccarelli, K.Pithewan,
"Generalized Multi-Protocol Label Switching (GMPLS) "Generalized Multi-Protocol Label Switching (GMPLS)
Signaling Extensions for the evolving G.709 Optical Signaling Extensions for the evolving G.709 Optical
Transport Networks Control, work in progress Transport Networks Control, work in progress
draft-ietf-ccamp-gmpls-signaling-g709v3-05", draft-ietf-ccamp-gmpls-signaling-g709v3-11", June 2013.
November 2012.
[RFC2154] Murphy, S., Badger, M., and B. Wellington, "OSPF with [RFC2154] Murphy, S., Badger, M., and B. Wellington, "OSPF with
Digital Signatures", RFC 2154, June 1997. Digital Signatures", RFC 2154, June 1997.
[RFC5920] Fang, L., "Security Framework for MPLS and GMPLS [RFC5920] Fang, L., "Security Framework for MPLS and GMPLS
Networks", RFC 5920, July 2010. Networks", RFC 5920, July 2010.
[RFC6163] Lee, Y., Bernstein, G., and W. Imajuku, "Framework for [RFC6163] Lee, Y., Bernstein, G., and W. Imajuku, "Framework for
GMPLS and Path Computation Element (PCE) Control of GMPLS and Path Computation Element (PCE) Control of
Wavelength Switched Optical Networks (WSONs)", RFC 6163, Wavelength Switched Optical Networks (WSONs)", RFC 6163,
 End of changes. 92 change blocks. 
205 lines changed or deleted 204 lines changed or added

This html diff was produced by rfcdiff 1.41. The latest version is available from http://tools.ietf.org/tools/rfcdiff/