draft-ietf-rtgwg-cl-use-cases-02.txt   draft-ietf-rtgwg-cl-use-cases-03.txt 
RTGWG S. Ning RTGWG S. Ning
Internet-Draft Tata Communications Internet-Draft Tata Communications
Intended status: Informational A. Malis Intended status: Informational A. Malis
Expires: August 8, 2013 D. McDysan Expires: December 17, 2013 D. McDysan
Verizon Verizon
L. Yong L. Yong
Huawei USA Huawei USA
C. Villamizar C. Villamizar
Outer Cape Cod Network Outer Cape Cod Network
Consulting Consulting
February 4, 2013 June 15, 2013
Composite Link Use Cases and Design Considerations Composite Link Use Cases and Design Considerations
draft-ietf-rtgwg-cl-use-cases-02 draft-ietf-rtgwg-cl-use-cases-03
Abstract Abstract
This document provides a set of use cases and design considerations This document provides a set of use cases and design considerations
for composite links. for composite links.
Composite link is a formalization of multipath techniques currently Composite link is a formalization of multipath techniques currently
in use in IP and MPLS networks and a set of extensions to multipath in use in IP and MPLS networks and a set of extensions to existing
techniques. multipath techniques.
Status of this Memo Status of this Memo
This Internet-Draft is submitted in full conformance with the This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79. provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet- working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/. Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
This Internet-Draft will expire on August 8, 2013. This Internet-Draft will expire on December 17, 2013.
Copyright Notice Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
skipping to change at page 2, line 28 skipping to change at page 2, line 28
3. Composite Link Foundation Use Cases . . . . . . . . . . . . . 4 3. Composite Link Foundation Use Cases . . . . . . . . . . . . . 4
4. Delay Sensitive Applications . . . . . . . . . . . . . . . . . 7 4. Delay Sensitive Applications . . . . . . . . . . . . . . . . . 7
5. Large Volume of IP and LDP Traffic . . . . . . . . . . . . . . 7 5. Large Volume of IP and LDP Traffic . . . . . . . . . . . . . . 7
6. Composite Link and Packet Ordering . . . . . . . . . . . . . . 8 6. Composite Link and Packet Ordering . . . . . . . . . . . . . . 8
6.1. MPLS-TP in network edges only . . . . . . . . . . . . . . 10 6.1. MPLS-TP in network edges only . . . . . . . . . . . . . . 10
6.2. Composite Link at core LSP ingress/egress . . . . . . . . 11 6.2. Composite Link at core LSP ingress/egress . . . . . . . . 11
6.3. MPLS-TP as a MPLS client . . . . . . . . . . . . . . . . . 12 6.3. MPLS-TP as a MPLS client . . . . . . . . . . . . . . . . . 12
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12
8. Security Considerations . . . . . . . . . . . . . . . . . . . 12 8. Security Considerations . . . . . . . . . . . . . . . . . . . 12
9. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 13 9. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 13
10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 13 10. Informative References . . . . . . . . . . . . . . . . . . . . 13
10.1. Normative References . . . . . . . . . . . . . . . . . . . 13
10.2. Informative References . . . . . . . . . . . . . . . . . . 13
Appendix A. More Details on Existing Network Operator Appendix A. More Details on Existing Network Operator
Practices and Protocol Usage . . . . . . . . . . . . 15 Practices and Protocol Usage . . . . . . . . . . . . 15
Appendix B. Existing Multipath Standards and Techniques . . . . . 17 Appendix B. Existing Multipath Standards and Techniques . . . . . 18
B.1. Common Multpath Load Spliting Techniques . . . . . . . . . 18 B.1. Common Multpath Load Spliting Techniques . . . . . . . . . 18
B.2. Static and Dynamic Load Balancing Multipath . . . . . . . 19 B.2. Static and Dynamic Load Balancing Multipath . . . . . . . 19
B.3. Traffic Split over Parallel Links . . . . . . . . . . . . 20 B.3. Traffic Split over Parallel Links . . . . . . . . . . . . 20
B.4. Traffic Split over Multiple Paths . . . . . . . . . . . . 20 B.4. Traffic Split over Multiple Paths . . . . . . . . . . . . 20
Appendix C. Characteristics of Transport in Core Networks . . . . 20 Appendix C. Characteristics of Transport in Core Networks . . . . 21
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 22 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 22
1. Introduction 1. Introduction
Composite link requirements are specified in Composite link requirements are specified in
[I-D.ietf-rtgwg-cl-requirement]. A composite link framework is [I-D.ietf-rtgwg-cl-requirement]. A composite link framework is
defined in [I-D.ietf-rtgwg-cl-framework]. defined in [I-D.ietf-rtgwg-cl-framework].
Multipath techniques have been widely used in IP networks for over Multipath techniques have been widely used in IP networks for over
two decades. The use of MPLS began more than a decade ago. two decades. The use of MPLS began more than a decade ago.
Multipath has been widely used in IP/MPLS networks for over a decade Multipath has been widely used in IP/MPLS networks for over a decade
with very little protocol support dedicated to effective use of with very little protocol support dedicated to effective use of
multipath. multipath.
The state of the art in multipath prior to composite links is The state of the art in multipath prior to composite links is
documented in Appendix B. documented in Appendix B.
Both Ethernet Link Aggregation [IEEE-802.1AX] and MPLS link bundling Both Ethernet Link Aggregation [IEEE-802.1AX] and MPLS link bundling
[RFC4201] have been widely used in today's MPLS networks. Composite [RFC4201] have been widely used in today's MPLS networks. Composite
link differs in the following caracteristics. link differs in the following characteristics.
1. A composite link allows bundling of non-homogenous links together 1. A composite link allows bundling of non-homogenous links together
as a single logical link. as a single logical link.
2. A composite link provides more information in the TE-LSDB and 2. A composite link provides more information in the TE-LSDB and
supports more explicit control over placement of LSP. supports more explicit control over placement of LSP.
2. Conventions used in this document 2. Conventions used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
2.1. Terminology 2.1. Terminology
Terminology defined in [I-D.ietf-rtgwg-cl-requirement] is used in Terminology defined in [I-D.ietf-rtgwg-cl-requirement] is used in
this document. this document.
In addition, the following terms are used: In addition, the following terms are used:
classic multipath: classic multipath:
Classic multipath refers to the most common current practice in Classic multipath refers to the most common current practice in
implementation and deployment of multipath (see Appendix A). The implementation and deployment of multipath (see Appendix B). The
most common current practice makes use of a hash on the MPLS most common current practice makes use of a hash on the MPLS
label stack and if IPv4 or IPv6 are indicates under the label label stack and if IPv4 or IPv6 are indicates under the label
stack, makes use of the IP source and destination addresses stack, makes use of the IP source and destination addresses
[RFC4385] [RFC4928]. [RFC4385] [RFC4928].
classic link bundling: classic link bundling:
Classic link bundling refers to the use of [RFC4201] where the Classic link bundling refers to the use of [RFC4201] where the
"all ones" component is not used. Where the "all ones" component "all ones" component is not used. Where the "all ones" component
is used, link bundling behaves as classic multipath does. is used, link bundling behaves as classic multipath does.
Classic link bundling selects a single component link on which to Classic link bundling selects a single component link to carry
put any given LSP. all of the traffic for a given LSP.
Among the important distinctions between classic multipath or classic Among the important distinctions between classic multipath or classic
link bundling and Composite Link are: link bundling and Composite Link are:
1. Classic multipath has no provision to retain order among flows 1. Classic multipath has no provision to retain packet order within
within a subset of LSP. Classic link bundling retains order any specific LSP. Classic link bundling retains packet order
among all flows but as a result does a poor job of splitting load among any given LSP but as a result does a poor job of splitting
among components and therefore is rarely (if ever) deployed. load among components and therefore is rarely (if ever) deployed.
Composite Link allows per LSP control of load split Composite Link allows per LSP control of load split
characteristics. characteristics.
2. Classic multipath and classic link bundling do not provide a 2. Classic multipath and classic link bundling do not provide a
means to put some LSP on component links with lower delay. means to put some LSP on component links with lower delay.
Composite Link does. Composite Link does.
3. Classic multipath will provide a load balance for IP and LDP 3. Classic multipath will provide a load balance for IP and LDP
traffic. Classic link bundling will not. Neither classic traffic. Classic link bundling will not. Neither classic
multipath or classic link bundling will measure IP and LDP multipath or classic link bundling will measure IP and LDP
traffic and reduce the advertised "Available Bandwidth" as a traffic and reduce the advertised "Available Bandwidth" as a
result of that measurement. Composite Link better supports result of that measurement. Composite Link better supports
RSVP-TE used with significant traffic levels of native IP and RSVP-TE used with significant traffic levels of native IP and
native LDP. native LDP.
4. Classic link bundling cannot support an LSP that is greater in 4. Classic link bundling cannot support an LSP that is greater in
capacity than any single component link. Classic multipath and capacity than any single component link. Classic multipath
Composite Link support this capability but will reorder traffic supports this capability but may reorder traffic on such an LSP.
on such an LSP. Composite Link can retain order of an LSP that Composite Link can retain order of an LSP that is carried within
is carried within an LSP that is greater in capacity than any an LSP that is greater in capacity than any single component link
single component link if the contained LSP has such a if the contained LSP has such a requirement.
requirement.
None of these techniques, classic multipath, classic link bundling, None of these techniques, classic multipath, classic link bundling,
or Composite Link, will reorder traffic among IP microflows. None of or Composite Link, will reorder traffic among IP microflows. None of
these techniques will reorder traffic among PW, if a PWE3 Control these techniques will reorder traffic among PW, if a PWE3 Control
Word is used [RFC4385]. Word is used [RFC4385].
3. Composite Link Foundation Use Cases 3. Composite Link Foundation Use Cases
A simple composite link composed entirely of physical links is A simple composite link composed entirely of physical links is
illustrated in Figure 1, where a composite link is configured between illustrated in Figure 1, where a composite link is configured between
skipping to change at page 5, line 4 skipping to change at page 4, line 45
None of these techniques, classic multipath, classic link bundling, None of these techniques, classic multipath, classic link bundling,
or Composite Link, will reorder traffic among IP microflows. None of or Composite Link, will reorder traffic among IP microflows. None of
these techniques will reorder traffic among PW, if a PWE3 Control these techniques will reorder traffic among PW, if a PWE3 Control
Word is used [RFC4385]. Word is used [RFC4385].
3. Composite Link Foundation Use Cases 3. Composite Link Foundation Use Cases
A simple composite link composed entirely of physical links is A simple composite link composed entirely of physical links is
illustrated in Figure 1, where a composite link is configured between illustrated in Figure 1, where a composite link is configured between
LSR1 and LSR2. This composite link has three component links. LSR1 and LSR2. This composite link has three component links.
Individual component links in a composite link may be supported by Individual component links in a composite link may be supported by
different transport technologies such as wavelength, Ethernet VLAN. different transport technologies such as SONET, OTN, Ethernet, etc.
Even if the transport technology implementing the component links is Even if the transport technology implementing the component links is
identical, the characteristics (e.g., bandwidth, latency) of the identical, the characteristics (e.g., bandwidth, latency) of the
component links may differ. component links may differ.
The composite link in Figure 1 may carry LSP traffic flows and The composite link in Figure 1 may carry LSP traffic flows and
control plane packets. Control plane packets may appear as IP control plane packets. Control plane packets may appear as IP
packets or may be carried within a generic associated channel (G-Ach) packets or may be carried within a generic associated channel (G-Ach)
[RFC5586]. A LSP may be established over the link by either RSVP-TE [RFC5586]. A LSP may be established over the link by either RSVP-TE
[RFC3209] or LDP [RFC5036] signaling protocols. All component links [RFC3209] or LDP [RFC5036] signaling protocols. All component links
in a composite link are summarized in the same forwarding adjacency in a composite link are summarized in the same forwarding adjacency
skipping to change at page 6, line 28 skipping to change at page 6, line 28
| | |-----| LSR5 |---------------------| LSR6 |----| | | | | |-----| LSR5 |---------------------| LSR6 |----| | |
| | +------+ +------+ | | | | +------+ +------+ | |
| LSR1 | | LSR2 | | LSR1 | | LSR2 |
+-------+ +-------+ +-------+ +-------+
|<------------- Composite Link ------------------->| |<------------- Composite Link ------------------->|
Figure 2: Illustration of Various Component Link Types Figure 2: Illustration of Various Component Link Types
The three forms of component link shown in Figure 2 are: The three forms of component link shown in Figure 2 are:
1. The first component link is configured with direct physical 1. The first component link is configured with direct physical media
media. plus a link layer protocol. This case also includes emulated
physical links, for example using pseudowire emulation.
2. The second component link is a TE tunnel that traverses LSR3 and 2. The second component link is a TE tunnel that traverses LSR3 and
LSR4, where LSR3 and LSR4 are the nodes supporting MPLS, but LSR4, where LSR3 and LSR4 are the nodes supporting MPLS, but
supporting few or no GMPLS extensions. supporting few or no GMPLS extensions.
3. The third component link is formed by lower layer network that 3. The third component link is formed by lower layer network that
has GMPLS enabled. In this case, LSR5 and LSR6 are not the nodes has GMPLS enabled. In this case, LSR5 and LSR6 are not the nodes
controlled by the MPLS but provide the connectivity for the controlled by the MPLS but provide the connectivity for the
component link. component link.
A composite link forms one logical link between connected LSR and is A composite link forms one logical link between connected LSR (LSR1
used to carry aggregated traffic [I-D.ietf-rtgwg-cl-requirement]. and LSR2 in Figure 1 and Figure 2) and is used to carry aggregated
Composite link relies on its component links to carry the traffic traffic [I-D.ietf-rtgwg-cl-requirement]. Composite link relies on
over the composite link. The endpoints of the composite link maps its component links to carry the traffic over the composite link.
incoming traffic into component links. The endpoints of the composite link maps incoming traffic into the
set of component links.
For example, LSR1 in Figure 1 distributes the set of traffic flows For example, LSR1 in Figure 1 distributes the set of traffic flows
including control plane packets among the set of component links. including control plane packets among the set of component links.
LSR2 in Figure 1 receives the packets from its component links and LSR2 in Figure 1 receives the packets from its component links and
sends them to MPLS forwarding engine with no attempt to reorder sends them to MPLS forwarding engine with no attempt to reorder
packets arriving on different component links. The traffic in the packets arriving on different component links. The traffic in the
opposite direction, from LSR2 to LSR1, is distributed across the set opposite direction, from LSR2 to LSR1, is distributed across the set
of component links by the LSR2. of component links by the LSR2.
These three forms of component link are only example. Many other These three forms of component link are a limited set of very simple
examples are possible. A component link may itself be a composite examples. Many other examples are possible. A component link may
link. A segment of an LSP (single hop for that LSP) may be a itself be a composite link. A segment of an LSP (single hop for that
composite link. LSP) may be a composite link.
4. Delay Sensitive Applications 4. Delay Sensitive Applications
Most applications benefit from lower delay. Some types of Most applications benefit from lower delay. Some types of
applications are far more sensitive than others. For example, real applications are far more sensitive than others. For example, real
time bidirectional applications such as voice communication or two time bidirectional applications such as voice communication or two
way video conferencing are far more sensitive to delay than way video conferencing are far more sensitive to delay than
unidirectional streaming audio or video. Non-interactive bulk unidirectional streaming audio or video. Non-interactive bulk
transfer is almost insensitive to delay if a large enough TCP window transfer is almost insensitive to delay if a large enough TCP window
is used. is used.
Some applications are sensitive to delay but unwilling to pay extra Some applications are sensitive to delay but users of those
to insure lower delay. For example, many SIP end users are willing applications are unwilling to pay extra to insure lower delay. For
to accept the delay offerred to best effort services as long as call example, many SIP end users are willing to accept the delay offered
quality is good most of the time. to best effort services as long as call quality is good most of the
time.
Other applications are sensitive to delay and willing to pay extra to Other applications are sensitive to delay and willing to pay extra to
insure lower delay. For example, financial trading applications are insure lower delay. For example, financial trading applications are
extremely sensitive to delay and with a lot at stake are willing to extremely sensitive to delay and with a lot at stake are willing to
go to great lengths to reduce delay. go to great lengths to reduce delay.
Among the requirements of Composite Link are requirements to Among the requirements of Composite Link are requirements to
advertise capacity available within configured ranges of delay within advertise capacity available within configured ranges of delay within
a given composite link and the support the ability to place an LSP a given composite link and the support the ability to place an LSP
only on component links that meeting that LSP's delay requirements. only on component links that meeting that LSP's delay requirements.
The Composite Link requirements to accommodate delay sensitive The Composite Link requirements to accommodate delay sensitive
applications are analogous to diffserv requirements to accomodate applications are analogous to Diffserv requirements to accommodate
applications requiring higher quality of service on the same applications requiring higher quality of service on the same
infrastructure as applications with less demanding requirements. The infrastructure as applications with less demanding requirements. The
ability to share capacity with less demanding applications, with best ability to share capacity with less demanding applications, with best
effort applications being the least demanding, can greatly reduce the effort applications being the least demanding, can greatly reduce the
cost of delivering service to the more demanding applications. cost of delivering service to the more demanding applications.
5. Large Volume of IP and LDP Traffic 5. Large Volume of IP and LDP Traffic
IP and LDP do not support traffic engineering. Both make use of a IP and LDP do not support traffic engineering. Both make use of a
shortest (lowest routing metric) path, with an option to use equal shortest (lowest routing metric) path, with an option to use equal
cost multipath (ECMP). Note that though ECMP is prohibited in LDP cost multipath (ECMP). Note that though ECMP is prohibited in LDP
specifications, it is widely implemented. Where implemented for LDP, specifications, it is widely implemented. Where implemented for LDP,
ECMP is generally disabled by default for standards compliance, but ECMP is generally disabled by default for standards compliance, but
often enabled in LDP deployments. often enabled in LDP deployments.
Without traffic engineering capability, there must be sufficient Without traffic engineering capability, there must be sufficient
capacity to accomodate the IP and LDP traffic. If not, persistent capacity to accommodate the IP and LDP traffic. If not, persistent
queuing delay and loss will occur. Unlike RSVP-TE, a subset of queuing delay and loss will occur. Unlike RSVP-TE, a subset of
traffic cannot be routed using constraint based routing to avoid a traffic cannot be routed using constraint based routing to avoid a
congested portion of an infrastructure. congested portion of an infrastructure.
In existing networks which accomodate IP and/or LDP with RSVP-TE, In existing networks which accommodate IP and/or LDP with RSVP-TE,
either the IP and LDP can be carried over RSVP-TE, or where the either the IP and LDP can be carried over RSVP-TE, or where the
traffic contribution of IP and LDP is small, IP and LDP can be traffic contribution of IP and LDP is small, IP and LDP can be
carried native and the effect on RSVP-TE can be ignored. Ignoring carried native and the effect on RSVP-TE can be ignored. Ignoring
the traffic contribution of IP is certainly valid on high capacity the traffic contribution of IP is certainly valid on high capacity
networks where native IP is used primarily for control and network networks where native IP is used primarily for control and network
management and customer IP is carried within RSVP-TE. management and customer IP is carried within RSVP-TE.
Where it is desireable to carry native IP and/or LDP and IP and/or Where it is desirable to carry native IP and/or LDP and IP and/or LDP
LDP traffic volumes are not negligible, RSVP-TE needs improvement. traffic volumes are not negligible, RSVP-TE needs improvement. An
The enhancement offerred by Composite Link is an ability to measure enhancement offered by Composite Link is an ability to measure the IP
the IP and LDP, filter the measurements, and reduce the capacity and LDP, filter the measurements, and reduce the capacity available
available to RSVP-TE to avoid congestion. The treatment given to the to RSVP-TE to avoid congestion. The treatment given to the IP or LDP
IP or LDP traffic is similar to the treatment when using the "auto- traffic is similar to the treatment when using the "auto-bandwidth"
bandwidth" feature in some RSVP-TE implementations on that same feature in some RSVP-TE implementations on that same traffic, and
traffic, and giving a higher priority (numerically lower setup giving a higher priority (numerically lower setup priority and
priority and holding priority value) to the "auto-bandwidth" LSP. holding priority value) to the "auto-bandwidth" LSP. The difference
The difference is that the measurement is made at each hop and the is that the measurement is made at each hop and the reduction in
reduction in advertised bandwidth is made more directly. advertised bandwidth is made more directly.
6. Composite Link and Packet Ordering 6. Composite Link and Packet Ordering
A strong motivation for Composite Link is the need to provide LSP A strong motivation for Composite Link is the need to provide LSP
capacity in IP backbones that exceeds the capacity of single capacity in IP backbones that exceeds the capacity of single
wavelengths provided by transport equipment and exceeds the practical wavelengths provided by transport equipment and exceeds the practical
capacity limits acheivable through inverse multiplexing. Appendix C capacity limits achievable through inverse multiplexing. Appendix C
describes characteristics and limitations of transport systems today. describes characteristics and limitations of transport systems today.
Section 2 defines the terms "classic multipath" and "classic link Section 2 defines the terms "classic multipath" and "classic link
bundling" used in this section. bundling" used in this section.
For purpose of discussion, consider two very large cities, city A and For purpose of discussion, consider two very large cities, city A and
city Z. For example, in the US high traffic cities might be New York city Z. For example, in the US high traffic cities might be New York
and Los Angeles and in Europe high traffic cities might be London and and Los Angeles and in Europe high traffic cities might be London and
Amsterdam. Two other high volume cities, city B and city Y may share Amsterdam. Two other high volume cities, city B and city Y may share
common provider core network infrastructure. Using the same common provider core network infrastructure. Using the same
examples, the city B and Y may Washington DC and San Francisco or examples, the city B and Y may Washington DC and San Francisco or
skipping to change at page 9, line 11 skipping to change at page 9, line 16
contributors on either US coast include Boston, northern Virginia on contributors on either US coast include Boston, northern Virginia on
the east coast, and Seattle, and San Diego on the west coast. The the east coast, and Seattle, and San Diego on the west coast. The
capacity of IP/MPLS links within the shared infrastructure, for capacity of IP/MPLS links within the shared infrastructure, for
example city to city links in the Denver, Chicago, Detroit, and example city to city links in the Denver, Chicago, Detroit, and
Cleveland path in the US example, have capacities for most of the Cleveland path in the US example, have capacities for most of the
2000s decade that greatly exceeded single circuits available in 2000s decade that greatly exceeded single circuits available in
transport networks. transport networks.
For a case with four large traffic sources on either side of the For a case with four large traffic sources on either side of the
shared infrastructure, up to sixteen core city to core city traffic shared infrastructure, up to sixteen core city to core city traffic
flows in excess of transport circuit capacity may be accomodated on flows in excess of transport circuit capacity may be accommodated on
the shared infrastructure. the shared infrastructure.
Today the most common IP/MPLS core network design makes use of very Today the most common IP/MPLS core network design makes use of very
large links which consist of many smaller component links, but use large links which consist of many smaller component links, but use
classic multipath techniques rather than classic link bundling or classic multipath techniques rather than classic link bundling or
Composite Link. A component link typically corresponds to the Composite Link. A component link typically corresponds to the
largest circuit that the transport system is capable of providing (or largest circuit that the transport system is capable of providing (or
the largest cost effective circuit). IP source and destination the largest cost effective circuit). IP source and destination
address hashing is used to distribute flows across the set of address hashing is used to distribute flows across the set of
component links as described in Appendix B.3. component links as described in Appendix B.3.
skipping to change at page 9, line 33 skipping to change at page 9, line 38
Classic multipath can handle large LSP up to the total capacity of Classic multipath can handle large LSP up to the total capacity of
the multipath (within limits, see Appendix B.2). A disadvantage of the multipath (within limits, see Appendix B.2). A disadvantage of
classic multipath is the reordering among traffic within a given core classic multipath is the reordering among traffic within a given core
city to core city LSP. While there is no reordering within any city to core city LSP. While there is no reordering within any
microflow and therefore no customer visible issue, MPLS-TP cannot be microflow and therefore no customer visible issue, MPLS-TP cannot be
used across an infrastructure where classic multipath is in use, used across an infrastructure where classic multipath is in use,
except within pseudowires. except within pseudowires.
These capacity issues force the use of classic multipath today. These capacity issues force the use of classic multipath today.
Classic multipath excludes a direct use of MPLS-TP. The desire for Classic multipath excludes a direct use of MPLS-TP. The desire for
OAM, offerred by MPLS-TP, is in conflict with the use of classic OAM, offered by MPLS-TP, is in conflict with the use of classic
multipath. There are a number of alternatives that satisfy both multipath. There are a number of alternatives that satisfy both
requirements. Some alternatives are described below. requirements. Some alternatives are described below.
MPLS-TP in network edges only MPLS-TP in network edges only
A simple approach which requires no change to the core is to A simple approach which requires no change to the core is to
disallow MPLS-TP across the core unless carried within a disallow MPLS-TP across the core unless carried within a
pseudowire (PW). MPLS-TP may be used within edge domains where pseudowire (PW). MPLS-TP may be used within edge domains where
classic multipath is not used. PW may be signaled end to end classic multipath is not used. PW may be signaled end to end
using single segment PW (SS-PW), or stitched across domains using using single segment PW (SS-PW), or stitched across domains using
skipping to change at page 10, line 36 skipping to change at page 10, line 41
The above list of alternatives allow packet ordering within an LSP to The above list of alternatives allow packet ordering within an LSP to
be maintained in some circumstances and allow very large LSP be maintained in some circumstances and allow very large LSP
capacities. Each of these alternatives are discussed further in the capacities. Each of these alternatives are discussed further in the
following subsections. following subsections.
6.1. MPLS-TP in network edges only 6.1. MPLS-TP in network edges only
Classic MPLS link bundling is defined in [RFC4201] and has existed Classic MPLS link bundling is defined in [RFC4201] and has existed
since early in the 2000s decade. Classic MPLS link bundling place since early in the 2000s decade. Classic MPLS link bundling place
any given LSP entirely on a single component link. Classic MPLS link any given LSP entirely on a single component link. Classic MPLS link
bundling is not in widespread use as the means to accomodate large bundling is not in widespread use as the means to accommodate large
link capacities in core networks due to the simplicity and better link capacities in core networks due to the simplicity and better
multiplexing gain, and therefore lower network cost of classic multiplexing gain, and therefore lower network cost of classic
multipath. multipath.
If MPLS-TP OAM capability in the IP/MPLS network core LSP is not If MPLS-TP OAM capability in the IP/MPLS network core LSP is not
required, then there is no need to change existing network designs required, then there is no need to change existing network designs
which use classic multipath and both label stack and IP source and which use classic multipath and both label stack and IP source and
destination address based hashing as a basis for load splitting. destination address based hashing as a basis for load splitting.
If MPLS-TP is needed for a subset of LSP, then those LSP can be If MPLS-TP is needed for a subset of LSP, then those LSP can be
carried within pseudowires. The pseudowires adds a thin layer of carried within pseudowires. The pseudowires adds a thin layer of
encapsulation and therefore a small overhead. If only a subset of encapsulation and therefore a small overhead. If only a subset of
LSP need MPLS-TP OAM, then some LSP must make use of the pseudowires LSP need MPLS-TP OAM, then some LSP must make use of the pseudowires
and other LSP avoid them. A straihtforward way to accomplish this is and other LSP avoid them. A straightforward way to accomplish this
with administrative attributes [RFC3209]. is with administrative attributes [RFC3209].
6.2. Composite Link at core LSP ingress/egress 6.2. Composite Link at core LSP ingress/egress
Composite Link can be configured only for large LSP that are made of Composite Link can be configured for large LSP that are made of
smaller MPLS-TP component LSP. This approach is capable of smaller MPLS-TP component LSP. This approach is capable of
supporting MPLS-TP OAM over the entire set of component link LSP and supporting MPLS-TP OAM over the entire set of component link LSP and
therefore the entire set of top level LSP traversing the core. therefore the entire set of top level LSP traversing the core.
There are two primary disadvantage of this approach. One is the There are two primary disadvantage of this approach. One is the
number of top level LSP traversing the core can be dramatically number of top level LSP traversing the core can be dramatically
increased. The other disadvantage is the loss of multiplexing gain increased. The other disadvantage is the loss of multiplexing gain
that results from use of classic link bundling within the interior of that results from use of classic link bundling within the interior of
the core network. the core network.
skipping to change at page 11, line 39 skipping to change at page 11, line 43
long term statistical measures. For example, many providers base long term statistical measures. For example, many providers base
their LSP bandwidth parameters on the 95th percentile of carried their LSP bandwidth parameters on the 95th percentile of carried
traffic as measured over a one week period. It is common to add traffic as measured over a one week period. It is common to add
10-30% to the 95th percentile value measured over the prior week and 10-30% to the 95th percentile value measured over the prior week and
adjust bandwidth parameters of LSP weekly. It is also possible to adjust bandwidth parameters of LSP weekly. It is also possible to
measure traffic flow at the LSR and adjust bandwidth parameters measure traffic flow at the LSR and adjust bandwidth parameters
somewhat more dynamically. This is less common in deployments and somewhat more dynamically. This is less common in deployments and
where deployed, make use of filtering to track very long term trends where deployed, make use of filtering to track very long term trends
in traffic levels. In either case, short term variation of traffic in traffic levels. In either case, short term variation of traffic
levels relative to signaled LSP capacity are common. Allowing a levels relative to signaled LSP capacity are common. Allowing a
large overallocation of LSP bandwidth parameters (ie: adding 30% or large over allocation of LSP bandwidth parameters (ie: adding 30% or
more) avoids overutilization of any given LSP, but increases unused more) avoids over utilization of any given LSP, but increases unused
network capacity and increases network cost. Allowing a small network capacity and increases network cost. Allowing a small over
overallocation of LSP bandwidth parameters (ie: 10-20% or less) allocation of LSP bandwidth parameters (ie: 10-20% or less) results
results in both underutilization and overutilization but in both underutilization and over utilization but statistically
statistically results in a total utilization within the core that is results in a total utilization within the core that is under capacity
under capacity most or all of the time. most or all of the time.
The classic multipath solution accomodates the situation in which The classic multipath solution accommodates the situation in which
some composite LSP are underutilizing their signaled capacity and some composite LSP are under utilizing their signaled capacity and
others are overutilizing their capacity with the need for far less others are over utilizing their capacity with the need for far less
unused network capacity to accomodate variation in actual traffic unused network capacity to accommodate variation in actual traffic
levels. If the actual traffic levels of LSP can be described by a levels. If the actual traffic levels of LSP can be described by a
probability distribution, the variation of the sum of LSP is less probability distribution, the variation of the sum of LSP is less
than the variation of any given LSP for all but a constant traffic than the variation of any given LSP for all but a constant traffic
level (where the variation of the sum and the components are both level (where the variation of the sum and the components are both
zero). zero).
There are two situations which can motivate the use of this approach. There are two situations which can motivate the use of this approach.
This design is favored if the provider values MPLS-TP OAM across the This design is favored if the provider values MPLS-TP OAM across the
core more than efficiency (or is unaware of the efficiency issue). core more than efficiency (or is unaware of the efficiency issue).
This design can also make sense if transport equipment or very low This design can also make sense if transport equipment or very low
cost core LSR are available which support only classic link bundling cost core LSR are available which support only classic link bundling
and regardless of loss of multiplexing gain, are more cost effective and regardless of loss of multiplexing gain, are more cost effective
at carrying transit traffic than using equipment which supports IP at carrying transit traffic than using equipment which supports IP
source and destination address hashing. source and destination address hashing.
6.3. MPLS-TP as a MPLS client 6.3. MPLS-TP as a MPLS client
Accomodating MPLS-TP as a MPLS client requires a small change to Accommodating MPLS-TP as a MPLS client requires a small change to
forwarding behavior and is therefore most applicable to major network forwarding behavior and is therefore most applicable to major network
overbuilds or new deployments. The change to forwarding is an overbuilds or new deployments. This approach is described in
ability to limit the depth of MPLS labels used in hashing on the [I-D.ietf-mpls-multipath-use] and makes use of Entropy Labels
label stack on a per LSP basis. Some existing hardware, particularly [RFC6790].
microprogrammed hardware, may be able to accomodate this forwarding
change. Providing support in new hardware is not difficult, a much
smaller change than, for example, changes required to disable PHP in
an environment where LSP hierarchy is used.
The advantage of this approach is an ability to accommodate MPLS-TP The advantage of this approach is an ability to accommodate MPLS-TP
as a client LSP but retain the high multiplexing gain and therefore as a client LSP but retain the high multiplexing gain and therefore
efficency and low network cost of a pure MPLS deployment. The efficiency and low network cost of a pure MPLS deployment. The
disadvantage is the need for a small change in forwarding. disadvantage is the need for a small change in forwarding.
7. IANA Considerations 7. IANA Considerations
This memo includes no request to IANA. This memo includes no request to IANA.
8. Security Considerations 8. Security Considerations
This document is a use cases document. Existing protocols are This document is a use cases document. Existing protocols are
referenced such as MPLS. Existing techniques such as MPLS link referenced such as MPLS. Existing techniques such as MPLS link
bundling and multipath techniques are referenced. These protocols bundling and multipath techniques are referenced. These protocols
and techniques are documented elsewhere and contain security and techniques are documented elsewhere and contain security
considerations which are unchanged by this document. considerations which are unchanged by this document.
This document also describes use cases for Composite Link, which is a This document also describes use cases for Composite Link. Composite
work-in-progress. Composite Link requirements are defined in Link requirements are defined in [I-D.ietf-rtgwg-cl-requirement].
[I-D.ietf-rtgwg-cl-requirement]. [I-D.ietf-rtgwg-cl-framework] [I-D.ietf-rtgwg-cl-framework] defines a framework for Composite Link.
defines a framework for Composite Link. Composite Link bears many
similarities to MPLS link bundling and multipath techniques used with
MPLS. Aditional security considerations, if any, beyond those
already identified for MPLS, MPLS link bundling and multipath
techniques, will be documented in the framework document if specific
to the overall framework of Composite Link, or in protocol extensions
if specific to a given protocol extension defined later to support
Composite Link.
9. Acknowledgments Composite Link bears many similarities to MPLS link bundling and
multipath techniques used with MPLS. Additional security
considerations, if any, beyond those already identified for MPLS,
MPLS link bundling and multipath techniques, will be documented in
the framework document if specific to the overall framework of
Composite Link, or in protocol extensions if specific to a given
protocol extension defined later to support Composite Link.
Authors would like to thank [ no one so far ] for their reviews and 9. Acknowledgments
great suggestions.
In the interest of full disclosure of affiliation and in the interest In the interest of full disclosure of affiliation and in the interest
of acknowledging sponsorship, past affiliations of authors are noted. of acknowledging sponsorship, past affiliations of authors are noted.
Much of the work done by Ning So occurred while Ning was at Verizon. Much of the work done by Ning So occurred while Ning was at Verizon.
Much of the work done by Curtis Villamizar occurred while at Much of the work done by Curtis Villamizar occurred while at
Infinera. Infinera continues to sponsor this work on a consulting Infinera. Infinera continues to sponsor this work on a consulting
basis. basis.
10. References 10. Informative References
10.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
10.2. Informative References [I-D.ietf-mpls-multipath-use]
Villamizar, C., "Use of Multipath with MPLS-TP and MPLS",
draft-ietf-mpls-multipath-use-00 (work in progress),
February 2013.
[I-D.ietf-rtgwg-cl-framework] [I-D.ietf-rtgwg-cl-framework]
Ning, S., McDysan, D., Osborne, E., Yong, L., and C. Ning, S., McDysan, D., Osborne, E., Yong, L., and C.
Villamizar, "Composite Link Framework in Multi Protocol Villamizar, "Composite Link Framework in Multi Protocol
Label Switching (MPLS)", draft-ietf-rtgwg-cl-framework-00 Label Switching (MPLS)", draft-ietf-rtgwg-cl-framework-02
(work in progress), August 2012. (work in progress), October 2012.
[I-D.ietf-rtgwg-cl-requirement] [I-D.ietf-rtgwg-cl-requirement]
Villamizar, C., McDysan, D., Ning, S., Malis, A., and L. Villamizar, C., McDysan, D., Ning, S., Malis, A., and L.
Yong, "Requirements for MPLS Over a Composite Link", Yong, "Requirements for Composite Links in MPLS Networks",
draft-ietf-rtgwg-cl-requirement-07 (work in progress), draft-ietf-rtgwg-cl-requirement-10 (work in progress),
June 2012. March 2013.
[IEEE-802.1AX] [IEEE-802.1AX]
IEEE Standards Association, "IEEE Std 802.1AX-2008 IEEE IEEE Standards Association, "IEEE Std 802.1AX-2008 IEEE
Standard for Local and Metropolitan Area Networks - Link Standard for Local and Metropolitan Area Networks - Link
Aggregation", 2006, <http://standards.ieee.org/getieee802/ Aggregation", 2006, <http://standards.ieee.org/getieee802/
download/802.1AX-2008.pdf>. download/802.1AX-2008.pdf>.
[ITU-T.G.694.2] [ITU-T.G.694.2]
ITU-T, "Spectral grids for WDM applications: CWDM ITU-T, "Spectral grids for WDM applications: CWDM
wavelength grid", 2003, wavelength grid", 2003,
skipping to change at page 14, line 50 skipping to change at page 14, line 45
[RFC2992] Hopps, C., "Analysis of an Equal-Cost Multi-Path [RFC2992] Hopps, C., "Analysis of an Equal-Cost Multi-Path
Algorithm", RFC 2992, November 2000. Algorithm", RFC 2992, November 2000.
[RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", RFC 3209, December 2001. Tunnels", RFC 3209, December 2001.
[RFC3260] Grossman, D., "New Terminology and Clarifications for [RFC3260] Grossman, D., "New Terminology and Clarifications for
Diffserv", RFC 3260, April 2002. Diffserv", RFC 3260, April 2002.
[RFC3270] Le Faucheur, F., Wu, L., Davie, B., Davari, S., Vaananen,
P., Krishnan, R., Cheval, P., and J. Heinanen, "Multi-
Protocol Label Switching (MPLS) Support of Differentiated
Services", RFC 3270, May 2002.
[RFC3809] Nagarajan, A., "Generic Requirements for Provider [RFC3809] Nagarajan, A., "Generic Requirements for Provider
Provisioned Virtual Private Networks (PPVPN)", RFC 3809, Provisioned Virtual Private Networks (PPVPN)", RFC 3809,
June 2004. June 2004.
[RFC3945] Mannie, E., "Generalized Multi-Protocol Label Switching [RFC3945] Mannie, E., "Generalized Multi-Protocol Label Switching
(GMPLS) Architecture", RFC 3945, October 2004. (GMPLS) Architecture", RFC 3945, October 2004.
[RFC4124] Le Faucheur, F., "Protocol Extensions for Support of
Diffserv-aware MPLS Traffic Engineering", RFC 4124,
June 2005.
[RFC4201] Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling [RFC4201] Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling
in MPLS Traffic Engineering (TE)", RFC 4201, October 2005. in MPLS Traffic Engineering (TE)", RFC 4201, October 2005.
[RFC4301] Kent, S. and K. Seo, "Security Architecture for the
Internet Protocol", RFC 4301, December 2005.
[RFC4385] Bryant, S., Swallow, G., Martini, L., and D. McPherson, [RFC4385] Bryant, S., Swallow, G., Martini, L., and D. McPherson,
"Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for
Use over an MPLS PSN", RFC 4385, February 2006. Use over an MPLS PSN", RFC 4385, February 2006.
[RFC4928] Swallow, G., Bryant, S., and L. Andersson, "Avoiding Equal [RFC4928] Swallow, G., Bryant, S., and L. Andersson, "Avoiding Equal
Cost Multipath Treatment in MPLS Networks", BCP 128, Cost Multipath Treatment in MPLS Networks", BCP 128,
RFC 4928, June 2007. RFC 4928, June 2007.
[RFC5036] Andersson, L., Minei, I., and B. Thomas, "LDP [RFC5036] Andersson, L., Minei, I., and B. Thomas, "LDP
Specification", RFC 5036, October 2007. Specification", RFC 5036, October 2007.
[RFC5586] Bocci, M., Vigoureux, M., and S. Bryant, "MPLS Generic [RFC5586] Bocci, M., Vigoureux, M., and S. Bryant, "MPLS Generic
Associated Channel", RFC 5586, June 2009. Associated Channel", RFC 5586, June 2009.
[RFC6391] Bryant, S., Filsfils, C., Drafz, U., Kompella, V., Regan, [RFC6391] Bryant, S., Filsfils, C., Drafz, U., Kompella, V., Regan,
J., and S. Amante, "Flow-Aware Transport of Pseudowires J., and S. Amante, "Flow-Aware Transport of Pseudowires
over an MPLS Packet Switched Network", RFC 6391, over an MPLS Packet Switched Network", RFC 6391,
November 2011. November 2011.
[RFC6790] Kompella, K., Drake, J., Amante, S., Henderickx, W., and
L. Yong, "The Use of Entropy Labels in MPLS Forwarding",
RFC 6790, November 2012.
Appendix A. More Details on Existing Network Operator Practices and Appendix A. More Details on Existing Network Operator Practices and
Protocol Usage Protocol Usage
Often, network operators have a contractual Service Level Agreement Often, network operators have a contractual Service Level Agreement
(SLA) with customers for services that are comprised of numerical (SLA) with customers for services that are comprised of numerical
values for performance measures, principally availability, latency, values for performance measures, principally availability, latency,
delay variation. Additionally, network operators may have Service delay variation. Additionally, network operators may have Service
Level Sepcification (SLS) that is for internal use by the operator. Level Specification (SLS) that is for internal use by the operator.
See [ITU-T.Y.1540], [ITU-T.Y.1541], RFC3809, Section 4.9 [RFC3809] See [ITU-T.Y.1540], [ITU-T.Y.1541], RFC3809, Section 4.9 [RFC3809]
for examples of the form of such SLA and SLS specifications. In this for examples of the form of such SLA and SLS specifications. In this
document we use the term Network Performance Objective (NPO) as document we use the term Network Performance Objective (NPO) as
defined in section 5 of [ITU-T.Y.1541] since the SLA and SLS measures defined in section 5 of [ITU-T.Y.1541] since the SLA and SLS measures
have network operator and service specific implications. Note that have network operator and service specific implications. Note that
the numerical NPO values of Y.1540 and Y.1541 span multiple networks the numerical NPO values of Y.1540 and Y.1541 span multiple networks
and may be looser than network operator SLA or SLS objectives. and may be looser than network operator SLA or SLS objectives.
Applications and acceptable user experience have an important Applications and acceptable user experience have an important
relationship to these performance parameters. relationship to these performance parameters.
Consider latency as an example. In some cases, minimizing latency Consider latency as an example. In some cases, minimizing latency
relates directly to the best customer experience (e.g., in TCP closer relates directly to the best customer experience (e.g., in TCP closer
is faster). In other cases, user experience is relatively is faster). In other cases, user experience is relatively
insensitive to latency, up to a specific limit at which point user insensitive to latency, up to a specific limit at which point user
perception of quality degrades significantly (e.g., interactive human perception of quality degrades significantly (e.g., interactive human
voice and multimedia conferencing). A number of NPOs have. a bound voice and multimedia conferencing). A number of NPOs have. a bound
on point-point latency, and as long as this bound is met, the NPO is on point-to-point latency, and as long as this bound is met, the NPO
met -- decreasing the latency is not necessary. In some NPOs, if the is met -- decreasing the latency is not necessary. In some NPOs, if
specified latency is not met, the user considers the service as the specified latency is not met, the user considers the service as
unavailable. An unprotected LSP can be manually provisioned on a set unavailable. An unprotected LSP can be manually provisioned on a set
of to meet this type of NPO, but this lowers availability since an of links to meet this type of NPO, but this lowers availability since
alternate route that meets the latency NPO cannot be determined. an alternate route that meets the latency NPO cannot be determined.
Historically, when an IP/MPLS network was operated over a lower layer Historically, when an IP/MPLS network was operated over a lower layer
circuit switched network (e.g., SONET rings), a change in latency circuit switched network (e.g., SONET rings), a change in latency
caused by the lower layer network (e.g., due to a maintenance action caused by the lower layer network (e.g., due to a maintenance action
or failure) this was not known to the MPLS network. This resulted in or failure) was not known to the MPLS network. This resulted in
latency affecting end user experience, sometimes violating NPOs or latency affecting end user experience, sometimes violating NPOs or
resulting in user complaints. resulting in user complaints.
A response to this problem was to provision IP/MPLS networks over A response to this problem was to provision IP/MPLS networks over
unprotected circuits and set the metric and/or TE-metric proportional unprotected circuits and set the metric and/or TE-metric proportional
to latency. This resulted in traffic being directed over the least to latency. This resulted in traffic being directed over the least
latency path, even if this was not needed to meet an NPO or meet user latency path, even if this was not needed to meet an NPO or meet user
experience objectives. This results in reduced flexibility and experience objectives. This results in reduced flexibility and
increased cost for network operators. Using lower layer networks to increased cost for network operators. Using lower layer networks to
provide restoration and grooming is expected to be more efficient, provide restoration and grooming is expected to be more efficient,
but the inability to communicate performance parameters, in but the inability to communicate performance parameters, in
particular latency, from the lower layer network to the higher layer particular latency, from the lower layer network to the higher layer
network is an important problem to be solved before this can be done. network is an important problem to be solved before this can be done.
Latency NPOs for point-to-point services are often tied closely to Latency NPOs for point-to-point services are often tied closely to
geographic locations, while latency for multipoint services may be geographic locations, while latency for multipoint services may be
based upon a worst case within a region. based upon a worst case within a region.
Section 7 of [ITU-T.Y.1540] defines availability for an IP service in Section 7 of [ITU-T.Y.1540] defines availability for an IP service in
terms of loss exceeding a threshold for a period on the order of 5 terms of loss exceeding a threshold for a period on the order of 5
minutes. However, the timeframes for restoration (i.e., as minutes. However, the time frames for restoration (i.e., as
implemented by pre-determined protection, convergence of routing implemented by predetermined protection, convergence of routing
protocols and/or signaling) for services range from on the order of protocols and/or signaling) for services range from on the order of
100 ms or less (e.g., for VPWS to emulate classical SDH/SONET 100 ms or less (e.g., for VPWS to emulate classical SDH/SONET
protection switching), to several minutes (e.g., to allow BGP to protection switching), to several minutes (e.g., to allow BGP to
reconverge for L3VPN) and may differ among the set of customers reconverge for L3VPN) and may differ among the set of customers
within a single service. within a single service.
The presence of only three Traffic Class (TC) bits (previously known The presence of only three Traffic Class (TC) bits (previously known
as EXP bits) in the MPLS shim header is limiting when a network as EXP bits) in the MPLS shim header is limiting when a network
operator needs to support QoS classes for multiple services (e.g., operator needs to support QoS classes for multiple services (e.g.,
L2VPN VPWS, VPLS, L3VPN and Internet), each of which has a set of QoS L2VPN VPWS, VPLS, L3VPN and Internet), each of which has a set of QoS
classes that need to be supported. In some cases one bit is used to classes that need to be supported and where the operator prefers to
indicate conformance to some ingress traffic classification, leaving use only E-LSP [RFC3270]. In some cases one bit is used to indicate
only two bits for indicating the service QoS classes. The approach conformance to some ingress traffic classification, leaving only two
that has been taken is to aggregate these QoS classes into similar bits for indicating the service QoS classes. One approach that has
sets on LER-LSR and LSR-LSR links. been taken is to aggregate these QoS classes into similar sets on
LER-LSR and LSR-LSR links and continue to use only E-LSP. Another
approach is to use L-LSP as defined in [RFC3270] or use the Class-
Type as defined in [RFC4124] to support up to eight mappings of TC
into Per-Hop Behavior (PHB).
Labeled LSPs and use of link layer encapsulation have been Labeled LSPs and use of link layer encapsulation have been
standardized in order to provide a means to meet these needs. standardized in order to provide a means to meet these needs.
The IP DSCP cannot be used for flow identification since RFC 4301 The IP DSCP cannot be used for flow identification. The use of IP
Section 5.5 [RFC4301] requires Diffserv transparency, and in general DSCP for flow identification is incompatible with Assured Forwarding
network operators do not rely on the DSCP of Internet packets. In services [RFC2597] or any other service which may use more than one
addition, the use of IP DSCP for flow identification is incompatible DSCP code point to carry traffic for a given microflow. In general
with Assured Forwarding services [RFC2597] or any other service which network operators do not rely on the DSCP of Internet packets in core
may use more than one DSCP code point to carry traffic for a given networks but must preserve DSCP values for use closer to network
microflow. edges.
A label is pushed onto Internet packets when they are carried along A label is pushed onto Internet packets when they are carried along
with L2/L3VPN packets on the same link or lower layer network with L2/L3VPN packets on the same link or lower layer network
provides a mean to distinguish between the QoS class for these provides a mean to distinguish between the QoS class for these
packets. packets.
Operating an MPLS-TE network involves a different paradigm from Operating an MPLS-TE network involves a different paradigm from
operating an IGP metric-based LDP signaled MPLS network. The operating an IGP metric-based LDP signaled MPLS network. The
multipoint-to-point LDP signaled MPLS LSPs occur automatically, and multipoint-to-point LDP signaled MPLS LSPs occur automatically, and
balancing across parallel links occurs if the IGP metrics are set balancing across parallel links occurs if the IGP metrics are set
"equally" (with equality a locally definable relation). "equally" (with equality a locally definable relation).
Traffic is typically comprised of a few large (some very large) flows Traffic is typically comprised of a few large (some very large) flows
and many small flows. In some cases, separate LSPs are established and many small flows. In some cases, separate LSPs are established
for very large flows. This can occur even if the IP header for very large flows. This can occur even if the IP header
information is inspected by a LSR, for example an IPsec tunnel that information is inspected by a LSR, for example an IPsec tunnel that
carries a large amount of traffic. An important example of large carries a large amount of traffic. An important example of large
flows is that of a L2/L3 VPN customer who has an access line flows is that of a L2/L3 VPN customer who has an access line
bandwdith comparable to a client-client composite link bandwidth -- bandwidth comparable to a client-client composite link bandwidth --
there could be flows that are on the order of the access line there could be flows that are on the order of the access line
bandwdith. bandwidth.
Appendix B. Existing Multipath Standards and Techniques Appendix B. Existing Multipath Standards and Techniques
Today the requirement to handle large aggregations of traffic, much Today the requirement to handle large aggregations of traffic, much
larger than a single component link, can be handled by a number of larger than a single component link, can be handled by a number of
techniques which we will collectively call multipath. Multipath techniques which we will collectively call multipath. Multipath
applied to parallel links between the same set of nodes includes applied to parallel links between the same set of nodes includes
Ethernet Link Aggregation [IEEE-802.1AX], link bundling [RFC4201], or Ethernet Link Aggregation [IEEE-802.1AX], link bundling [RFC4201], or
other aggregation techniques some of which may be vendor specific. other aggregation techniques some of which may be vendor specific.
Multipath applied to diverse paths rather than parallel links Multipath applied to diverse paths rather than parallel links
includes Equal Cost MultiPath (ECMP) as applied to OSPF, ISIS, or includes Equal Cost MultiPath (ECMP) as applied to OSPF, ISIS, or
even BGP, and equal cost LSP, as described in Appendix B.4. Various even BGP, and equal cost LSP, as described in Appendix B.4. Various
mutilpath techniques have strengths and weaknesses. multipath techniques have strengths and weaknesses.
the term Composite Link is more general than terms such as Link the term Composite Link is more general than terms such as Link
Aggregation which is generally considered to be specific to Ethernet Aggregation which is generally considered to be specific to Ethernet
and its use here is consistent with the broad definition in and its use here is consistent with the broad definition in
[ITU-T.G.800]. The term multipath excludes inverse multiplexing and [ITU-T.G.800]. The term multipath excludes inverse multiplexing and
refers to techniques which only solve the problem of large refers to techniques which only solve the problem of large
aggregations of traffic, without addressing the other requirements aggregations of traffic, without addressing the other requirements
outlined in this document, particularly those described in Section 4 outlined in this document, particularly those described in Section 4
and Section 5. and Section 5.
B.1. Common Multpath Load Spliting Techniques B.1. Common Multpath Load Spliting Techniques
Identical load balancing techniqes are used for multipath both over Identical load balancing techniques are used for multipath both over
parallel links and over diverse paths. parallel links and over diverse paths.
Large aggregates of IP traffic do not provide explicit signaling to Large aggregates of IP traffic do not provide explicit signaling to
indicate the expected traffic loads. Large aggregates of MPLS indicate the expected traffic loads. Large aggregates of MPLS
traffic are carried in MPLS tunnels supported by MPLS LSP. LSP which traffic are carried in MPLS tunnels supported by MPLS LSP. LSP which
are signaled using RSVP-TE extensions do provide explicit signaling are signaled using RSVP-TE extensions do provide explicit signaling
which includes the expected traffic load for the aggregate. LSP which includes the expected traffic load for the aggregate. LSP
which are signaled using LDP do not provide an expected traffic load. which are signaled using LDP do not provide an expected traffic load.
MPLS LSP may contain other MPLS LSP arranged hierarchically. When an MPLS LSP may contain other MPLS LSP arranged hierarchically. When an
skipping to change at page 18, line 48 skipping to change at page 19, line 9
to contain a group of flows. The reordering of traffic can therefore to contain a group of flows. The reordering of traffic can therefore
be considered to be acceptable unless reordering occurs within be considered to be acceptable unless reordering occurs within
traffic containing a common unique set of label stack entries. traffic containing a common unique set of label stack entries.
Existing load splitting techniques take advantage of this property in Existing load splitting techniques take advantage of this property in
addition to looking beyond the bottom of the label stack and addition to looking beyond the bottom of the label stack and
determining if the payload is IPv4 or IPv6 to load balance traffic determining if the payload is IPv4 or IPv6 to load balance traffic
accordingly. accordingly.
MPLS-TP OAM violates the assumption that it is safe to reorder MPLS-TP OAM violates the assumption that it is safe to reorder
traffic within an LSP. If MPLS-TP OAM is to be accommodated, then traffic within an LSP. If MPLS-TP OAM is to be accommodated, then
existing multipth techniques must be modified. Such modifications existing multipath techniques must be modified. Such modifications
are outside the scope of this document. are outside the scope of this document.
For example,a large aggregate of IP traffic may be subdivided into a For example,a large aggregate of IP traffic may be subdivided into a
large number of groups of flows using a hash on the IP source and large number of groups of flows using a hash on the IP source and
destination addresses. This is as described in [RFC2475] and destination addresses. This is as described in [RFC2475] and
clarified in [RFC3260]. For MPLS traffic carrying IP, a similar hash clarified in [RFC3260]. For MPLS traffic carrying IP, a similar hash
can be performed on the set of labels in the label stack. These can be performed on the set of labels in the label stack. These
techniques are both examples of means to subdivide traffic into techniques are both examples of means to subdivide traffic into
groups of flows for the purpose of load balancing traffic across groups of flows for the purpose of load balancing traffic across
aggregated link capacity. The means of identifying a set of flows aggregated link capacity. The means of identifying a set of flows
skipping to change at page 20, line 8 skipping to change at page 20, line 18
single network element, then no protocol extensions are required and single network element, then no protocol extensions are required and
there are no interoperability issues. there are no interoperability issues.
Note that if the load balancing algorithm and/or its parameters is Note that if the load balancing algorithm and/or its parameters is
adjusted, then packets in some flows may be briefly delivered out of adjusted, then packets in some flows may be briefly delivered out of
sequence, however in practice such adjustments can be made very sequence, however in practice such adjustments can be made very
infrequent. infrequent.
B.3. Traffic Split over Parallel Links B.3. Traffic Split over Parallel Links
The load spliting techniques defined in Appendix B.1 and Appendix B.2 The load splitting techniques defined in Appendix B.1 and
are both used in splitting traffic over parallel links between the Appendix B.2 are both used in splitting traffic over parallel links
same pair of nodes. The best known technique, though far from being between the same pair of nodes. The best known technique, though far
the first, is Ethernet Link Aggregation [IEEE-802.1AX]. This same from being the first, is Ethernet Link Aggregation [IEEE-802.1AX].
technique had been applied much earlier using OSPF or ISIS Equal Cost This same technique had been applied much earlier using OSPF or ISIS
MultiPath (ECMP) over parallel links between the same nodes. Equal Cost MultiPath (ECMP) over parallel links between the same
Multilink PPP [RFC1717] uses a technique that provides inverse nodes. Multilink PPP [RFC1717] uses a technique that provides
multiplexing, however a number of vendors had provided proprietary inverse multiplexing, however a number of vendors had provided
extensions to PPP over SONET/SDH [RFC2615] that predated Ethernet proprietary extensions to PPP over SONET/SDH [RFC2615] that predated
Link Aggregation but are no longer used. Ethernet Link Aggregation but are no longer used.
Link bundling [RFC4201] provides yet another means of handling Link bundling [RFC4201] provides yet another means of handling
parallel LSP. RFC4201 explicitly allow a special value of all ones parallel LSP. RFC4201 explicitly allow a special value of all ones
to indicate a split across all members of the bundle. This "all to indicate a split across all members of the bundle. This "all
ones" component link is signaled in the MPLS RESV to indicate that ones" component link is signaled in the MPLS RESV to indicate that
the link bundle is making use of classic multipath techniques. the link bundle is making use of classic multipath techniques.
B.4. Traffic Split over Multiple Paths B.4. Traffic Split over Multiple Paths
OSPF or ISIS Equal Cost MultiPath (ECMP) is a well known form of OSPF or ISIS Equal Cost MultiPath (ECMP) is a well known form of
skipping to change at page 21, line 16 skipping to change at page 21, line 23
channels (independent ignoring crosstalk noise) at slightly different channels (independent ignoring crosstalk noise) at slightly different
wavelengths of light, multiplexed onto a single fiber. Typical in wavelengths of light, multiplexed onto a single fiber. Typical in
the early 2000s was 40 wavelengths of 10 Gb/s capacity per the early 2000s was 40 wavelengths of 10 Gb/s capacity per
wavelength. These wavelengths are in the C-band range, which is wavelength. These wavelengths are in the C-band range, which is
about 1530-1565 nm, though some work has been done using the L-band about 1530-1565 nm, though some work has been done using the L-band
1565-1625 nm. 1565-1625 nm.
The C-band has been carved up using a 100 GHz spacing from 191.7 THz The C-band has been carved up using a 100 GHz spacing from 191.7 THz
to 196.1 THz by [ITU-T.G.694.2]. This yields 44 channels. If the to 196.1 THz by [ITU-T.G.694.2]. This yields 44 channels. If the
outermost channels are not used, due to poorer transmission outermost channels are not used, due to poorer transmission
characteristics, then typcially 40 are used. For practical reasons, characteristics, then typically 40 are used. For practical reasons,
a 50 GhZ or 25 GHz spacing is used by more recent equipment, a 50 GhZ or 25 GHz spacing is used by more recent equipment,
yielding. 80 or 160 channels in practice. yielding. 80 or 160 channels in practice.
The early optical modulation techniques used within a single channel The early optical modulation techniques used within a single channel
yielded 2.5Gb/s and 10 Gb/s capacity per channel. As modulation yielded 2.5Gb/s and 10 Gb/s capacity per channel. As modulation
techniques have improved 40 Gb/s and 100 Gb/s per channel have been techniques have improved 40 Gb/s and 100 Gb/s per channel have been
acheived. achieved.
The 40 channels of 10 Gb/s common in the mid 2000s yields a total of The 40 channels of 10 Gb/s common in the mid 2000s yields a total of
400 Gb/s. Tighter spacing and better modulations are yielding up to 400 Gb/s. Tighter spacing and better modulations are yielding up to
8 Tb/s or more in more recent systems. 8 Tb/s or more in more recent systems.
Over the optical is an electrical encoding. In the 1990s this was Over the optical is an electrical encoding. In the 1990s this was
typically Synchronous Optical Networking (SONET) or Synchronous typically Synchronous Optical Networking (SONET) or Synchronous
Digital Hierarchy (SDH), with a maximum defined circuit capacity of Digital Hierarchy (SDH), with a maximum defined circuit capacity of
40 Gb/s (OC-768), though the 10 Gb/s OC-192 is more common. More 40 Gb/s (OC-768), though the 10 Gb/s OC-192 is more common. More
recently the low level electrical encoding has been Optical Transport recently the low level electrical encoding has been Optical Transport
skipping to change at page 21, line 46 skipping to change at page 22, line 6
make use of time division multiplexing (TDM) where the a higher make use of time division multiplexing (TDM) where the a higher
capacity circuit such as a 100 Gb/s ODU4 in OTN may be subdivided capacity circuit such as a 100 Gb/s ODU4 in OTN may be subdivided
into lower fixed capacity circuits such as ten 10 Gb/s ODU2. into lower fixed capacity circuits such as ten 10 Gb/s ODU2.
In the 1990s, all IP and later IP/MPLS networks either used a In the 1990s, all IP and later IP/MPLS networks either used a
fraction of maximum circuit capacity, or at most the full circuit fraction of maximum circuit capacity, or at most the full circuit
capacity toward the end of the decade, when full circuit capacity was capacity toward the end of the decade, when full circuit capacity was
2.5 Gb/s or 10 Gb/s. Beyond 2000, the TDM circuit multiplexing 2.5 Gb/s or 10 Gb/s. Beyond 2000, the TDM circuit multiplexing
capability of SONET/SDH or OTN was rarely used. capability of SONET/SDH or OTN was rarely used.
Early in the 2000s both transport equipment and core LSR offerred 40 Early in the 2000s both transport equipment and core LSR offered 40
Gb/s SONET OC-768. However 10 Gb/s transport equipment was Gb/s SONET OC-768. However 10 Gb/s transport equipment was
predominantly deployed throughout the decade, partially because LSR predominantly deployed throughout the decade, partially because LSR
10GbE ports were far more cost effective than either OC-192 or OC-768 10GbE ports were far more cost effective than either OC-192 or OC-768
and became practical in the second half of the decade. and became practical in the second half of the decade.
Entering the 2010 decade, LSR 40GbE and 100GbE are expected to become Entering the 2010 decade, LSR 40GbE and 100GbE are expected to become
widely available and cost effective. Slightly preceeding this widely available and cost effective. Slightly preceding this
transport equipment making use of 40 Gb/s and 100 Gb/s modulations transport equipment making use of 40 Gb/s and 100 Gb/s modulations
are becoming available. This transport equipment is capable or are becoming available. This transport equipment is capable or
carrying 40 Gb/s ODU3 and 100 Gb/s ODU4 circuits. carrying 40 Gb/s ODU3 and 100 Gb/s ODU4 circuits.
Early in the 2000s decade IP/MPLS core networks were making use of Early in the 2000s decade IP/MPLS core networks were making use of
single 10 Gb/s circuits. Capacity grew quickly in the first half of single 10 Gb/s circuits. Capacity grew quickly in the first half of
the decade but more IP/MPLS core networks had only a small number of the decade but more IP/MPLS core networks had only a small number of
IP/MPLS links requiring 4-8 parallel 10 Gb/s circuits. However, the IP/MPLS links requiring 4-8 parallel 10 Gb/s circuits. However, the
use of multipath was necessary, was deemed the simplest and most cost use of multipath was necessary, was deemed the simplest and most cost
effective alternative, and became thoroughly entrenched. By the end effective alternative, and became thoroughly entrenched. By the end
skipping to change at page 22, line 27 skipping to change at page 22, line 36
exceeded 100 Gb/s, long before 40GbE was available and 40 Gb/s exceeded 100 Gb/s, long before 40GbE was available and 40 Gb/s
transport in widespread use. transport in widespread use.
It is less clear when IP/MPLS LSP exceeded 10 Gb/s, 40 Gb/s, and 100 It is less clear when IP/MPLS LSP exceeded 10 Gb/s, 40 Gb/s, and 100
Gb/s. By 2010, many service providers have LSP in excess of 100 Gb/s. By 2010, many service providers have LSP in excess of 100
Gb/s, but few are willing to disclose how many LSP have reached this Gb/s, but few are willing to disclose how many LSP have reached this
capacity. capacity.
At the time of writing 40GbE and 100GbE LSR products are being At the time of writing 40GbE and 100GbE LSR products are being
evaluated by service providers and contect providers and are in use evaluated by service providers and contect providers and are in use
in network trials. The cost of components required to deliver 100 in network trials. The cost of components required to deliver 100GbE
GbE products remains high making these products less cost effective. products remains high making these products less cost effective.
This is expected to change within years. This is expected to change within years.
The important point is that IP/MPLS core network links have long ago The important point is that IP/MPLS core network links have long ago
exceeded 100 Gb/s and a small number of IP/MPLS LSP exceed 100 Gb/s. exceeded 100 Gb/s and a small number of IP/MPLS LSP exceed 100 Gb/s.
By the time 100 Gb/s circuits are widely deployed, IP/MPLS core By the time 100 Gb/s circuits are widely deployed, IP/MPLS core
network links are likely to exceed 1 Tb/s and many IP/MPLS LSP network links are likely to exceed 1 Tb/s and many IP/MPLS LSP
capacities are likely to exceed 100 Gb/s. Therefore multipath capacities are likely to exceed 100 Gb/s. Therefore multipath
techniques are likely here to stay. techniques are likely here to stay.
Authors' Addresses Authors' Addresses
 End of changes. 64 change blocks. 
158 lines changed or deleted 158 lines changed or added

This html diff was produced by rfcdiff 1.41. The latest version is available from http://tools.ietf.org/tools/rfcdiff/